'Frogs' and 'mushrooms' bubble up in quantum fluids

April 4, 2018, The Ohio State University
'Frogs' and 'mushrooms' bubble up in quantum fluids
Sort of looks like a frog, right? Researchers at The Ohio State University and their colleagues are using a supercomputer to simulate what happens when two exotic superfluids mix. The simulations have produced some unusual shapes, including 'mushrooms' and this frog-like shape. Credit: Kui-Tian Xi, courtesy of The Ohio State University. [K.-T. Xi et al., Phys. Rev. A (2018)]

Quantum fluids may mix in very weird ways, according to new computer simulations of exotic states of matter known as Bose-Einstein condensates (BECs).

Far in the future, BECs may enable new kinds of ultra-fast computers. But for now, researchers are just trying to understand the basic physics of how they work.

That's what an Ohio State University visiting scholar in the Department of Physics, Kui-Tian Xi, and his colleagues were doing when they used a supercomputer to simulate what would happen if someone mixed two magnetically polarized BECs.

Snapshots from the simulations, published in the journal Physical Review A, resemble ink blot tests that can be interpreted in any number of ways. As one percolated up through the other, Xi first saw the blobs form a turtle (that is, a pattern with six finger-like shapes that looked like a head, tail and four legs, similar to a turtle), then a frog (back legs akimbo) and finally an explosion of mushroom shapes.

It might not have been exactly what he expected, but Xi said he wasn't all that surprised, either.

"To be honest, I did expect that I may see some interesting dynamical properties. But when I first saw the turtle, I thought I might have calculated the parameters of the simulation wrong," he said. "Then I realized there might be some kind of instability at the interface of the fluids, just like those of classical fluids."

Researchers at The Ohio State University and their colleagues are using a supercomputer to simulate what happens when two exotic super fluids mix. The simulations have produced some unusual shapes, including 'mushrooms' and this frog-like shape. Credit: Kui-Tian Xi, courtesy of The Ohio State University. [K.-T. Xiet al., Phys. Rev. A (2018)]

Bose Einstein Condensates are gases made of atoms that are so cold, all of their motion nearly ceases. As the Indian physicist Satyendra Nath Bose and Albert Einstein predicted in the 1920s—and experiments eventually proved in the 1990s—BECs display strange properties because all the atoms occupy the same quantum state.

As such, BECs are superfluids. They are supposed to be frictionless, so they should flow together with zero viscosity. Yet, when Xi adjusted parameters of the , such as the strength of the magnetic interactions, the two fluids mixed as if one was more viscous than the other—the way viscous hot wax bobs through less viscous water inside a lava lamp.

Mushroom cloud: Researchers at The Ohio State University and their colleagues are using a supercomputer to simulate what happens when two exotic superfluids mix. The simulations have produced some unusual shapes, including 'frogs' and these mushroom-like shapes. Credit: Kui-Tian Xi, courtesy of The Ohio State University. [K.-T. Xi et al., Phys. Rev. A (2018)]

Xi and his colleagues, including Hiroki Saito, study leader and professor of engineering science at the University of Electro-Communications in Japan, believe that the simulations offer clues to phenomena that physicists have seen in actual experiments. Under certain circumstances, BECs do seem to behave like normal matter.

In particular, Xi points to recent numerical simulations at Newcastle University where another superfluid, liquid helium, formed waves of turbulence as it flowed over the rough surface of a wire.

The cause of the strange simulated BEC behavior remains to be seen, but Xi said that current technology would allow experimental physicists to conduct the experiment for real. As a theorist, though, he's going to focus on the possible implications of an increasing connection between the behavior of quantum and classical fluids.

Explore further: Bose-Einstein condensates miscibility properties reveal surprises

More information: Kui-Tian Xi et al. Fingering instabilities and pattern formation in a two-component dipolar Bose-Einstein condensate, Physical Review A (2018). DOI: 10.1103/PhysRevA.97.023625 , journals.aps.org/pra/abstract/ … 3/PhysRevA.97.023625

Related Stories

Quantum particles form droplets

November 28, 2016

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: the atoms form a new type of quantum liquid or quantum droplet state. These so called quantum ...

Looking for entangled atoms in a Bose-Einstein condensate

February 3, 2017

Using a Bose-Einstein condensate composed of millions of sodium atoms, researchers at the Georgia Institute of Technology have observed a sharp magnetically-induced quantum phase transition where they expect to find entangled ...

Recommended for you

Physicist describes the shape of a wormhole

October 17, 2018

A RUDN physicist demonstrated how to describe the shape of any symmetrical wormhole—a black hole that theoretically can be a kind of a portal between any two points in space and time—based on its wave spectrum. The research ...

Physics: Not everything is where it seems to be

October 16, 2018

Scientists at TU Wien, the University of Innsbruck and the ÖAW have for the first time demonstrated a wave effect that can lead to measurement errors in the optical position estimation of objects. The work now published ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.