CFRP recycling—into the battery instead of the garbage

April 10, 2018, Fraunhofer-Gesellschaft
The Fraunhofer ICT uses recycled, small chopped carbon fibers (top) to produce bipolar plates (bottom) for batteries and fuel cells. Credit: Fraunhofer ICT

Carbon fiber-reinforced plastics are gaining importance as components of aircraft. The trend is increasing the need for sustainable recycling concepts. At the ILA from April 25 to 29, 2018 in Berlin, Fraunhofer will present a technology that converts recycled carbon fibers into materials for batteries and fuel cells. This saves costs, improves the CO2 balance and opens up new means of recycling in aircraft production.

Modern wide-body aircrafts today consist of over 50 percent fiber reinforced plastics (CFRP). The material is installed, for example, over a large area in the wings or fuselage. With carbon fibers embedded in a plastic matrix, the composite is lighter than previously used materials, while still being very stable. The decisive advantage for aviation: due to their lower weight, airplanes need less fuel. "The manufacturing and processing of the CFRP is currently very time-consuming. The demand for sustainable recycling concepts is therefore steadily increasing," observes Elisa Seiler, scientist at the Fraunhofer Institute for Chemical Technology ICT in Pfinztal, Germany. The amounts of CFRP recycling material are tremendous: for the Airbus 350, for example, they add up to over 65 tons. "In addition to this there are other relevant scrap quantities that already arise during production," adds Seiler.

Bipolar plate manufactured

The Fraunhofer ICT has many years of experience in the development of technologies for fiber-reinforced plastics. At the ILA, the aviation and aerospace innovation trade fair, the scientists are presenting a concept that will be used to recover materials for batteries and fuel cells out of recycled carbon fibers. Together with partners, it has been possible to use recovered carbon fibers to produce a prototype of a bipolar plate – an electrode – on an industrial scale. The result is based on research from the "Graphit 2.0" and "RETRO" projects.

"Electric drives are now also a serious topic in the aviation industry. Manufacturers can directly perform value-preserving recycling by transferring from one application to the next," says Seiler. The carbon fibers are electrically conductive and are suitable as a substitute for natural graphite, which also consists of carbon: a resource-critical raw material for the German economy that currently has to be imported from China at great expense.

Food for 3-D printing

Another advantage: recycled CFRP can be used for additive manufacturing processes such as 3-D printing. "This is also a trending topic in the industry that makes production processes more efficient and saves costs," says Seiler. After all, aircraft manufacturers also have to comply with the European Union (EU) requirements that have been in force since 2015: up to 85 percent of the average weight of a used vehicle has to be recycled. In addition: In Germany, the landfilling of CFRP is prohibited, and waste incineration plants can refuse to accept the material.

Pyrolysis with microwave radiation

The CFRP experts have developed a special process with which can be recovered from the plastic matrix. To do so, they use to burn the plastic matrix that surrounds the fibers. So that the fibers do not burn up at temperatures of up to 900 degrees Celsius, the combustion has to be performed without oxygen. "In technical jargon, this is called pyrolytic decomposition," Seiler explains. The advantage of microwave radiation: energy efficiency – a whole oven no longer needs to be heated, just the component itself. The colleagues of the Polymer Engineering department at the Fraunhofer ICT embed the recovered fibers in thermoplastic material. This composite material has similar properties to graphite and is suitable for the production of bipolar plates. "Our prototype passed all the tests for conductivity, density and corrosion resistance perfectly," reports Seiler.

"We've proven that it's generally feasible to use recycled CFRP fibers to produce bipolar plates for batteries and fuel cells. This shows that recycling works in a holistic approach. This is particularly interesting for the aviation industry," says Seiler in summarizing the added value of the research work. Both the recycled CFRP as well as the bipolar plates made from it can be seen at the ILA. The next steps until early summer are the characterization of the bipolar plates in the battery cell network and studies concerning the life cycle assessment. "Then, we want to tune the technology so that we can manufacture bipolar plates from recycled CFRP in series – for example, with an aviation partner," concludes Seiler.

Explore further: Rapid and energy-efficient production of lightweight components

Related Stories

Less moisture in natural fibers

February 1, 2018

Natural fibers have many advantages: they are renewable, biodegradable and robust. They are more energy-efficient to produce than glass or carbon fibers, are lighter and have better acoustics. Their disadvantage: they absorb ...

Decreasing the mass of aircraft with polymer composites

February 9, 2017

Members of the Department of Chemistry of Lomonosov Moscow State University have created unique polymer matrices for polymer composites based on novel phthalonitrile monomers. The materials are stronger than metals, which ...

Vehicle body made from cotton, hemp, and wood

January 6, 2015

Carbon and glass fibers reinforce synthetics so that they can be used for vehicle body construction. But in this regard, there is an abundance of potential found in natural fibers – obtained from hemp, cotton, or wood. ...

Recommended for you

The powerful meteor that no one saw (except satellites)

March 19, 2019

At precisely 11:48 am on December 18, 2018, a large space rock heading straight for Earth at a speed of 19 miles per second exploded into a vast ball of fire as it entered the atmosphere, 15.9 miles above the Bering Sea.

OSIRIS-REx reveals asteroid Bennu has big surprises

March 19, 2019

A NASA spacecraft that will return a sample of a near-Earth asteroid named Bennu to Earth in 2023 made the first-ever close-up observations of particle plumes erupting from an asteroid's surface. Bennu also revealed itself ...

Nanoscale Lamb wave-driven motors in nonliquid environments

March 19, 2019

Light driven movement is challenging in nonliquid environments as micro-sized objects can experience strong dry adhesion to contact surfaces and resist movement. In a recent study, Jinsheng Lu and co-workers at the College ...

Revealing the rules behind virus scaffold construction

March 19, 2019

A team of researchers including Northwestern Engineering faculty has expanded the understanding of how virus shells self-assemble, an important step toward developing techniques that use viruses as vehicles to deliver targeted ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.