Researchers track down "forged" superfoods

March 1, 2018, Karlsruhe Institute of Technology
Tracking down forged superfoods. Credit: KIT/Karl-Heinz Knoch

Chia seeds, Moringa powder, Açai or Goji berries, the list of foods with alleged health benefits is increasing constantly. Health-conscious consumers love "superfoods" that are attributed stress-reducing and detoxifying properties as well as properties strengthening the immune system. Now, in the cold season in particular, there is a growing trend of consumers to use not only proven household remedies, such as hot lemon or sage tea, but medicinal plants from abroad, such as Indian basil, also known as tulsi. The problem: The more exotic the foods are, the less the consumer can be sure to have the original product. Mix-ups or product counterfeiting are increasing. For this reason, researchers of Karlsruhe Institute of Technology (KIT) have developed genetic bar codes for superfoods.

"Thanks to globalization, special medicinal that grow in a single region only have a worldwide market," says Peter Nick of KIT's Botanical Institute. If the rapidly changing superfood trends lead to a sudden increase in demand, these often cannot be met by existing capacities, the professor for says. The result is a booming trade in counterfeits. "The caterpillar fungus is deemed to have a strengthening and aphrodisiac effect in traditional medicine. Every year, however, the exported quantity of this mushroom is eight times that of its harvest," Nick says.

Counterfeit medicinal plants and superfoods are difficult to identify even by experts. "Often, these are exotic plants and no one knows what they look like," Nick says. Or only few species have the desired properties. "1400 species of bamboo exist, but the leaves of only three can be used to prepare the popular health-promoting tea," Nick says. It is similar with Indian basil, also called holy basil. "The right tulsi may be helpful in case of breathing difficulties or bronchitis, but other species may cause allergic reactions."

Due to such risks, plant products are checked for the correctness of the list of ingredients in import controls. These checks are mostly carried out microscopically with the help of botanical descriptions. "But in case of a powder of e.g. Chia, which is a type of sage by the way, this method is of no use," Nick points out. Alternative methods, such as readout of gene sequences, which is also done in paternity tests, are very time-consuming and expensive. Nick and his team have developed a process based on small differences of the gene sequence to specifically apply gene scissors to certain points of the DNA strands that make up the genetic material. Similar to a key that fits a lock, the scissors only fit a specific pattern of gene fragments that may serve as a genetic fingerprint for the species searched. If the scissors snap shut, Nick knows that this is the right plant. "This resembles a bar code that can be read out with the corresponding scanner." Nick has already collected 7000 of such bar codes in his database.

Explore further: Consumers treat superfoods as 'extra insurance'

Related Stories

Consumers treat superfoods as 'extra insurance'

July 21, 2016

Australian consumers are skeptical about new superfoods as they enter the market but still consume them for a bit of "extra insurance" for their health, according to new research at the University of Adelaide.

Precise molecular surgery in the plant genome

April 24, 2012

Crop plants have always been adapted to the needs of man by breeding for them to carry more fruit, survive droughts, or resist pests. Green biotechnology now adds new tools to the classical breeding methods for a more rapid ...

Best basil varieties for hydroponic greenhouse production

December 21, 2015

As the popularity of fresh culinary herbs increases, growers are looking to year-round production methods to supply distributors and local consumers. In colder climates, culinary herb growers rely on controlled indoor environments ...

Molecular scissors help evolutionary investigation

June 24, 2016

Scientists at KIT (Karlsruhe Institute of Technology) detected an important mechanism in the evolution of plant genomes: Using Arabidopsis thaliana as a model organism, they studied the formation of tandem repeat DNA sequences ...

Recommended for you

Researchers isolate parvovirus from ancient human remains

July 13, 2018

Airborne and bloodborne human parvovirus B19 causes a number of illnesses, including the childhood rash known as fifth disease, chronic anemia in AIDS patients, arthritis in elderly people, aplastic crisis in people with ...

Finding the proteins that unpack DNA

July 12, 2018

A new method allows researchers to systematically identify specialized proteins that unpack DNA inside the nucleus of a cell, making the usually dense DNA more accessible for gene expression and other functions. The method, ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.