A better way to model stellar explosions

March 5, 2018 by Whitney Clavin, California Institute of Technology
A better way to model stellar explosions
Artist's concept of two neutron stars colliding. Credit: NSF/LIGO/Sonoma State University/A. Simonnet

Neutron stars consist of the densest form of matter known: a neutron star the size of Los Angeles can weigh twice as much as our sun. Astrophysicists don't fully understand how matter behaves under these crushing densities, let alone what happens when two neutron stars smash into each other or when a massive star explodes, creating a neutron star.

One tool scientists use to model these powerful phenomena is the " of state." Loosely, the equation of state describes how matter behaves under different densities and temperatures. The temperatures and densities that occur during these extreme events can vary greatly, and strange behaviors can emerge; for example, protons and neutrons can arrange themselves into complex shapes known as nuclear "pasta."

But, until now, there were only about 20 equations of state readily available for simulations of astrophysical phenomena. Caltech postdoctoral scholar in theoretical astrophysics Andre da Silva Schneider decided to tackle this problem using computer codes. Over the past three years, he has been developing open-source software that allows astrophysicists to generate their own equations of state. In a new paper in the journal Physical Review C, he and his colleagues describe the code and demonstrate how it works by simulating supernovas of 15 and 40 times the mass of the sun.

The research has immediate applications for researchers studying , including those analyzing data from the National Science Foundation's Laser Interferometer Gravitational-wave Observatory, or LIGO, which made the first detection of ripples in space and time, known as gravitational waves, from a star collision, in 2017. That event was also witnessed by a cadre of telescopes around the world, which captured light waves from the same event.

"The equations of state help astrophysicists study the outcome of neutron star mergers—they indicate whether a neutron star is 'soft' or 'stiff,' which in turn determines whether a more massive neutron star or a black hole forms out of the collision," says da Silva Schneider. "The more observations we have from LIGO and other light-based telescopes, the more we can refine the equation of state—and update our software so that astrophysicists can generate new and more realistic equations for future studies."

More detailed information can be found in the Physical Review C study, titled "Open-source nuclear equation of state framework based on the liquid-drop model with Skyrme interaction."

Explore further: New method to measure neutron star size uses modeling based on thermonuclear explosions

More information: A. S. Schneider et al. Open-source nuclear equation of state framework based on the liquid-drop model with Skyrme interaction, Physical Review C (2017). DOI: 10.1103/PhysRevC.96.065802

Related Stories

Neutron stars on the brink of collapse

December 5, 2017

When a massive star dies, its core contracts. In a supernova explosion, the star's outer layers are expelled, leaving behind an ultra-compact neutron star. For the first time, the LIGO and Virgo Observatories have recently ...

How massive can neutron stars be?

January 16, 2018

Astrophysicists at Goethe University Frankfurt set a new limit for the maximum mass of neutron stars: They cannot exceed 2.16 solar masses.

Neutron-star merger yields new puzzle for astrophysicists

January 18, 2018

The afterglow from the distant neutron-star merger detected last August has continued to brighten - much to the surprise of astrophysicists studying the aftermath of the massive collision that took place about 138 million ...

What are neutron stars?

October 16, 2017

Thrilled physicists and astronomers announced Monday the first-ever observation of the merger of two neutron stars, one of the most spectacularly violent phenomena in the Universe.

Recommended for you

Pushing the extra cold frontiers of superconducting science

October 18, 2018

Measuring the properties of superconducting materials in magnetic fields at close to absolute zero temperatures is difficult, but necessary to understand their quantum properties. How cold? Lower than 0.05 Kelvin (-272°C).

The big problem of small data: A new approach

October 18, 2018

Big Data is all the rage today, but Small Data matters too! Drawing reliable conclusions from small datasets, like those from clinical trials for rare diseases or in studies of endangered species, remains one of the trickiest ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.