Scientists map the portal to the cell's nucleus

March 15, 2018, Rockefeller University
A map showing how the 552 pieces of the pore complex fit together could inform research into numerous diseases. Credit: Rockefeller University

Like an island nation, the nucleus of a cell has a transportation problem. Evolution has enclosed it with a double membrane, the nuclear envelope, which protects DNA but also cuts it off from the rest of the cell. Nature's solution is a massive—by molecular standards—cylindrical configuration known as the nuclear pore complex, through which imports and exports travel, connecting the bulk of the cell with its headquarters.

In research described March 14 in Nature, scientists at Rockefeller University and their colleagues have delineated the architecture of the in yeast cells. The biological blueprint they uncovered shares principles sometimes seen on a much larger scale in concrete, steel, and wire.

"It reminds us of a suspension bridge, in which a combination of sturdy and flexible parts produce a stress-resilient ," says Michael P. Rout, who led the work together with Brian T. Chait.

The pore complex contains 552 component proteins, called nucleoporins, and scientists hadn't previously known how they all fit together. It took a combination of approaches to assemble a comprehensive map of these pieces. The researchers hope this new molecular structure will enable new studies of how the nuclear portal functions normally, and how defects in it lead to diseases such as cancer.

A milestone

The pore complex first emerged when single-celled organisms—the only living things at the time—acquired special compartments containing organ-like structures, including the nucleus, which houses the cell's genetic code.

It serves not only as a conduit to and from the nucleus, but also as a checkpoint regulating what passes in and out. Genetic instructions transcribed into RNA are allowed to exit, for example, while proteins needed inside the nucleus may enter. Other things, such as viruses bent on taking over the cell, are kept at bay.

Rout and Chait began mapping this ancient structure more than 20 years ago, knowing the project could well span decades since the target of their curiosity is not easily defined.

A map showing how the 552 pieces of the pore complex fit together could inform research into numerous diseases. Credit: The Rockefeller University

More than a third of the pore complex can move about, and this flexibility, along with the structure's immense size and the constant stream of traffic passing through it, meant that no single approach to mapping it would work. "In the end, we used everything we could lay our hands on, brought the results together, and integrated them into a single structure," says Chait, who is Rockefeller's Camille and Henry Dreyfus Professor.

Together with researchers at the University of California, San Francisco; Boston University Medical School; and Baylor College of Medicine, the team was able to determine the type and amount of each nucleoporin and their proximities to one another, as well as the weight and shape of the whole complex.

This data allowed them to visualize the anatomy of many of the individual pore components and to place them all within the pore complex. They uncovered a complicated ringed structure containing rigid, diagonal columns and flexible connectors that evoke the towers and cables of human-made structures like the Golden Gate Bridge.

The resulting map is a breakthrough in a line of investigation with a deep Rockefeller history. The pore complex first came into human view in the 1950s, when a university scientist, Michael Watson, observed small densities dotting the surface of the . And about two decades later, the lab of Günter Blobel, who passed away last month, was among the first to discover individual nups and then determine their structure.

A new starting point

When it comes to the pore complex, yeast has a considerable amount in common with us. When the team compared their data with structural findings from human pore complexes, they found similar elements arranged somewhat differently. The resemblance suggests the yeast pore complex could be useful for research relevant to humans.

And there's a lot of such research to be done. Defects in the complex and its components have been linked to a host of diseases, including autoimmune disorders and cancer; meanwhile, viruses have evolved ways to sneak past it altogether. But the details of these malfunctions and blind spots are often obscure.

The new yeast structure may help. With it, the team found they could map sites that are altered in some cancers—evidence, they say, that the yeast can be used to test how factors like stress, drugs, or mutations change the human structure, and so aiding efforts to understand and treat disease.

Explore further: Researchers create 3-D structure of the nuclear pore complex

More information: Seung Joong Kim et al, Integrative structure and functional anatomy of a nuclear pore complex, Nature (2018). DOI: 10.1038/nature26003

Related Stories

Researchers create 3-D structure of the nuclear pore complex

March 14, 2018

For the first time, researchers have produced a nearly complete three-dimensional structure for the yeast Nuclear Pore Complex (NPC). This discovery represents a major step toward identifying the atomic structure of the NPC, ...

Scientists reveal structure of nuclear pore's inner ring

April 15, 2016

It was a 3D puzzle with over 1000 pieces, with only a rather fuzzy outline as a guide. But scientists at EMBL have now put enough pieces in place to see the big picture. In a study published today in Science, they present ...

How shuttling proteins operate nuclear pores

September 4, 2017

Nuclear pore complexes are tiny channels where the exchange of substances between the cell nucleus and the cytoplasm takes place. Scientists at the University of Basel report on startling new research that might overturn ...

Recommended for you

Some female termites can reproduce without males

September 24, 2018

Populations of the termite species Glyptotermes nakajimai can form successful, reproducing colonies in absence of males, according to a study published in the open access journal BMC Biology.

Photosynthesis discovery could help next-gen biotechnologies

September 24, 2018

Researchers from The University of Queensland (UQ) and the University of Münster (WWU) have purified and visualized the 'Cyclic Electron Flow' (CEF) supercomplex, a critical part of the photosynthetic machinery in all plants, ...

How fruits got their eye-catching colors

September 24, 2018

Red plums. Green melons. Purple figs. Ripe fruits come in an array of greens, yellows, oranges, browns, reds and purples. Scientists say they have new evidence that plants owe their rainbow of fruit colors to the different ...

Custom circuits for living cells

September 24, 2018

A team of Caltech researchers has developed a biological toolkit of proteins that can be assembled together in different ways, like Legos, to program new behaviors in cells. As a proof-of-concept, they designed and constructed ...

Birds' voiceboxes are odd ducks

September 24, 2018

Birds sing from the heart. While other four-limbed animals like mammals and reptiles make sounds with voiceboxes in their throats, birds' chirps originate in a unique vocal organ called the syrinx, located in their chests. ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.