Painting a clear picture of how nitrogen oxides are formed

March 12, 2018 by Jared Sagoff, Argonne National Laboratory
Credit: CC0 Public Domain

Nitrogen oxides (NOx) are some of the most significant pollutants in our atmosphere—they contribute to the formation of smog, acid rain and ground-level ozone. Because of this, combustion researchers and engine companies have been working since the 1980s to understand how these gases are produced during combustion so that they can find ways to reduce them.

In a new review paper published in Progress in Energy and Combustion Science, researchers from the U.S. Department of Energy's Argonne National Laboratory and the Technical University of Denmark explain how they synthesized more than a decade's worth of combustion studies to create a new overarching model of how are produced.

"Our understanding of how these pollutants are produced in different environments has deepened dramatically."—Stephen Klippenstein, Argonne chemist

"NOx production is one of the main concerns for engine companies," said Argonne chemist Stephen Klippenstein, an author of the paper. "Our understanding of how these pollutants are produced in different engine environments has deepened dramatically."

A wide array of different chemical interactions occur within the mixture of fuel and air in an engine, and the new model identifies several different routes to NOx formation.

In one pathway, called prompt NO (nitrogen monoxide), atmospheric nitrogen combines with carbon to form an intermediary of one carbon and two , which eventually combine with oxygen to form nitrogen monoxide. In another pathway, called thermal NO, nitrogen monoxide is produced directly from nitrogen and oxygen. In a third, called fuel NO, a compound of nitrogen, carbon and oxygen forms the intermediary step on the way to .

"Trying to put together these pathways to create a model that accurately reproduces experimental observations has always been a bit of a guessing game," said Argonne chemist Branko Ruscic, another author of the study. "However, because so many scientists from around the world are contributing information about different segments of the larger picture, we're closer than ever before to a model that truly represents reality."

According to Klippenstein, one of the main characteristics of the combustion process—temperature—makes a big difference in the quantity of NOx produced. "The temperature affects the lifetimes of the molecules in the mix," he said. "Being able to accurately model and predict the behavior of some extremely short-lived molecules is crucially important to determining the pathways of the reaction."

"If you can run your engine at a lower temperature, you can avoid the formation of much of the NOx," he added.

Another factor in the combustion process that dramatically affects NOx production involves what researchers call the richness of the fuel mixture—that is, the proportion of fuel to air as combustion takes place in the engine. Engines that run richer will have molecules with more methyl groups, Ruscic said, which tend to promote the formation of NOx.

"We're getting to a place where we understand NOx production pretty well," said Ruscic. "It's really a good example of the triumph of community science."

"It's like putting together a jigsaw puzzle where some of the pieces might seem to fit but haven't yet been painted," said Klippenstein. "It's our role to figure out how to paint a few more pieces so that our collaborators can put together the picture better."

The study, "Modeling chemistry in ," appeared on February 22 in Progress in Energy and Combustion Science.

Explore further: Scientists reduce harmful emissions from HPPs

More information: Peter Glarborg et al, Modeling nitrogen chemistry in combustion, Progress in Energy and Combustion Science (2018). DOI: 10.1016/j.pecs.2018.01.002

Related Stories

Scientists reduce harmful emissions from HPPs

January 22, 2018

A team of scientists from Siberian Federal University (SFU) and their colleagues from Novosibirsk and the Netherlands modeled the process of coal burning in HPP boilers and determined which type of fuel produced less harmful ...

Researchers convert CO to CO2 with a single metal atom

March 5, 2018

Researchers from Washington State University and Tufts University have demonstrated for the first time that a single metal atom can act as a catalyst in converting carbon monoxide into carbon dioxide, a chemical reaction ...

Recommended for you

Meteorite source in asteroid belt not a single debris field

February 17, 2019

A new study published online in Meteoritics and Planetary Science finds that our most common meteorites, those known as L chondrites, come from at least two different debris fields in the asteroid belt. The belt contains ...

Diagnosing 'art acne' in Georgia O'Keeffe's paintings

February 17, 2019

Even Georgia O'Keeffe noticed the pin-sized blisters bubbling on the surface of her paintings. For decades, conservationists and scholars assumed these tiny protrusions were grains of sand, kicked up from the New Mexico desert ...

Archaeologists discover Incan tomb in Peru

February 16, 2019

Peruvian archaeologists discovered an Incan tomb in the north of the country where an elite member of the pre-Columbian empire was buried, one of the investigators announced Friday.

Where is the universe hiding its missing mass?

February 15, 2019

Astronomers have spent decades looking for something that sounds like it would be hard to miss: about a third of the "normal" matter in the Universe. New results from NASA's Chandra X-ray Observatory may have helped them ...

What rising seas mean for local economies

February 15, 2019

Impacts from climate change are not always easy to see. But for many local businesses in coastal communities across the United States, the evidence is right outside their doors—or in their parking lots.


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.