

Evolutionary computation has been
promising self-programming machines for 60
years – so where are they?

March 27 2018, by Graham Kendall

Credit: Julia M Cameron from Pexels

What if computers could program themselves? Instead of the laborious
job of working out how a computer could solve a problem and then

1/6

writing precise coded instructions, all you would have to do is tell it what
you want and the computer would generate an algorithm that solves your
problem.

Enter evolutionary computation, which can be seen as a type of artificial
intelligence and a branch of machine learning. First suggested in the
1950s, evolutionary computation is the idea that a computer can evolve
its own solutions to problems, rather than humans having to go through a
series of possibly complex steps to write the computer program
ourselves. In theory, this would mean computer programs that might take
weeks to program manually could be ready in a matter of minutes.

This idea enabled computers to solve complex problems that may not be
well be understood and are difficult for humans to tackle. Computer
scientists have used evolutionary computation on many problems,
including formulating the best mix of ingredients for shrimp feed,
portfolio optimisation, telecommunications, playing games and
automated packing.

And researchers who have been studying evolutionary computation for
over 60 years have made tremendous advances. It is even the subject of
several scientific journals. Yet, as I noted in a recent paper, the idea still
isn't used widely outside the research community. So why isn't
evolutionary computing evolving faster?

How does evolutionary computation work?

Evolutionary computation draws on Charles Darwin's principles of
natural evolution, commonly known as survival of the fittest. That is, the
weakest (less well adapted) members of a species die off and the
strongest survive. Over many generations, the species will evolve to
become better adapted to its environment.

2/6

https://phys.org/tags/artificial+intelligence/
https://phys.org/tags/artificial+intelligence/
https://dl.acm.org/citation.cfm?id=1662347
https://dl.acm.org/citation.cfm?id=1662347
http://dx.doi.org/10.1155/2017/7053710
http://dx.doi.org/10.1016/j.asoc.2014.08.026
http://dx.doi.org/10.1057/jors.2013.79
http://dx.doi.org/10.1109/TCIAIG.2012.2209424
http://dx.doi.org/10.1162/EVCO_a_00044
http://cis.ieee.org/ieee-transactions-on-evolutionary-computation.html
http://www.graham-kendall.com/papers/k2018.pdf
https://www.smithsonianmag.com/science-nature/the-evolution-of-charles-darwin-110234034/

Genetic programming tree. Credit: Wikimedia

In evolutionary computation, the computer creates a population of
potential solutions to a problem. These are often random solutions, so
they are unlikely to solve the problem being tackled or even come close.
But some will be slightly better than others. The computer can discard
the worst solutions, retain the better ones and use them to "breed" more
potential solutions. Parts of different solutions will be combined (this is
often called "crossover") to create a new generation of solutions that can
then be tested and the process begins again.

Another important element of evolutionary computation, as with natural
selection, is mutation. Every so often a small, random change is made to
one of the solutions being tested. This means new potential solutions can
be created that wouldn't be possible from just using crossover.

Hopefully a combination of crossover and mutation will produce new
potential solutions that are better than their "parents". This might not
happen every time, but as more generations are produced, better

3/6

solutions are more likely to emerge. It's not unusual for evolutionary
computation to involve many millions of generations, just as natural
selection can take many millions of years to noticeably alter a living
species.

One of the most popular types of evolutionary computation is genetic
programming. This involves one computer program evolving another
working program to tackle a specific problem. The user provides some
measure of what comprises a good program and then the evolutionary
process takes over, hopefully returning a program that solves the
problem.

We can trace genetic programming back to the late 1980s, with one of
the main proponents being John Koza. But even though it has since made
significant research advances, genetic programming is not used on a
daily basis by commercial organisations or home computer users. Given
how tricky it can be to develop software systems that work effectively
and efficiently, it would seem sensible to get computers to help in the
same way they are changing many other industries.

Why hasn't evolutionary computation been adopted?

The commercial sector hasn't embraced evolutionary computation as it
has other technologies developed by researchers. For example, 3-D
printing was invented in the 1980s and after a long period of
development is now being used in industrial manufacturing and even by
people in their homes. Similarly, augmented reality, virtual reality and
artificial intelligence have emerged from the research community and
become major products for big tech companies.

One of the key issues holding evolutionary computation back is the
failure of researchers to focus on problems that the commercial sector
would recognise. For example, computer scientists have intensively

4/6

https://phys.org/tags/natural+selection/
https://phys.org/tags/natural+selection/
http://geneticprogramming.com/
http://geneticprogramming.com/
https://dl.acm.org/citation.cfm?id=138936
http://www.human-competitive.org/
https://phys.org/tags/research+community/

studied how evolutionary computation could be used to schedule exam
timetables or working out routes for vehicles.

But researchers often only study simplified versions of problems that are
of little use in the real world. For example, many vehicle routing
simulations involve calculating the distance between two points using a
straight line. Vehicle routes in the real world rarely follow straight lines,
and have to contend with one way systems, breakdowns, legal issues
(such as how long before a driver must rest), time constraints and a
whole lot more. However, this complexity is actually where evolutionary
computation could help. If you can adequately define the problem as it
occurs in the real world, then the evolutionary algorithm should be able
to deal with its complexity.

Another problem is that the solutions evolutionary computation
generates are often hard to explain. For example, even though a genetic
programming system might create a solution with a perfect outcome,
how it actually works might be a mystery to a human programmer as the
system may have produced complex code that is difficult to interpret and
understand.

An evolutionary computation system is also complex to implement and
support and this may put off some commercial organisations. It would
help if there was an easy-to-use framework that hid much of the
underlying complexity. While these frameworks exist in the scientific
community, they are not easily accessible by the commercial sector,
never mind home users.

IBM's famous computer architect Frederick Brooks said that you cannot
tackle increasingly large software development projects simply by
throwing more people at them. It would be an immense help to the
software development industry if, instead of having to manually develop
every piece of a system, developers could specify the requirements of its

5/6

https://phys.org/tags/real+world/
https://phys.org/tags/genetic+programming/
https://phys.org/tags/genetic+programming/
https://phys.org/tags/solution/
http://lancet.mit.edu/ga/
https://phys.org/tags/commercial+sector/
https://phys.org/tags/computer/
https://www.theguardian.com/technology/2013/apr/21/fred-brooks-complex-software-projects

key parts and let an evolutionary process deliver the solutions.

This article was originally published on The Conversation. Read the
original article.

Provided by The Conversation

Citation: Evolutionary computation has been promising self-programming machines for 60 years
– so where are they? (2018, March 27) retrieved 7 May 2024 from
https://phys.org/news/2018-03-evolutionary-self-programming-machines-years.html

This document is subject to copyright. Apart from any fair dealing for the purpose of private
study or research, no part may be reproduced without the written permission. The content is
provided for information purposes only.

Powered by TCPDF (www.tcpdf.org)

6/6

http://theconversation.com
https://theconversation.com/evolutionary-computation-has-been-promising-self-programming-machines-for-60-years-so-where-are-they-91872
https://phys.org/news/2018-03-evolutionary-self-programming-machines-years.html
http://www.tcpdf.org

