Earth's magnetosphere

March 26, 2018, Science@NASA

Enveloping our planet and protecting us from the fury of the Sun is a giant bubble of magnetism called the magnetosphere. It deflects most of the solar material sweeping towards us from our star at 1 million miles per hour or more. Without the magnetosphere, the relentless action of these solar particles could strip the Earth of its protective layers, which shield us from the Sun's ultraviolet radiation. It's clear that this magnetic bubble was key to helping Earth develop into a habitable planet.

Compare Earth to Mars – a planet that lost its about 4.2 billion years ago. The Solar wind is thought to have stripped away most of Mars' atmosphere, possibly after the red planet's magnetic field dissipated. This has left Mars as the stark, barren world we see today through the 'eyes' of NASA orbiters and rovers. By contrast, Earth's magnetosphere seems to have kept our atmosphere protected.

Eftyhia Zesta of the Geospace Physics Laboratory at NASA's Goddard Space Flight Center notes, "If there were no magnetic field, we might have a very different atmosphere left without life as we know it."

Understanding our magnetosphere is a key element to helping scientists someday forecast that can affect Earth's technology. Extreme can disrupt communications networks, GPS navigation, and electrical power grids.

The magnetosphere is a permeable shield. The solar wind will periodically connect to the magnetosphere forcing it to reconfigure. This can create a rift, allowing energy to pour into our safe haven. These rifts open and close many times daily or even many times hourly. Most of them are small and short-lived; others are vast and sustained. With the Sun's magnetic field connecting to Earth's in this way, the fireworks start.

Credit: Science@NASA

Zesta says, "The Earth's magnetosphere absorbs the incoming energy from the , and explosively releases that energy in the form of geomagnetic storms and substorms."

How does this happen? Magnetic lines of force converge and reconfigure, resulting in magnetic energy and charged-particles flying off at intense speeds. Scientists have been trying to learn why this crisscrossing of lines—called magnetic reconnection—triggers such a violent explosion, opening the rifts into the magnetosphere.

NASA's Magnetospheric Multiscale Mission, or MMS, was launched in March 2015 to observe the electron physics of magnetic reconnection for the first time. Bristling with energetic particle detectors and magnetic sensors, the four MMS spacecraft flew in close formation to areas on the front side of Earth's magnetosphere where occurs. MMS has since been conducting a similar hunt in the magnetosphere's tail.

MMS complements missions from NASA and partner agencies, such as THEMIS, Cluster, and Geotail, contributing critical new details to the ongoing study of Earth's magnetosphere. Together, data from these investigations not only help unravel the fundamental physics of space, but also help improve space weather forecasting.

Explore further: Taking a spin on plasma space tornadoes with NASA observations

Related Stories

Studying magnetic space explosions with NASA missions

March 9, 2017

Every day, invisible magnetic explosions are happening around Earth, on the surface of the sun and across the universe. These explosions, known as magnetic reconnection, occur when magnetic field lines cross, releasing stored ...

The magnetosphere has a large intake of solar wind energy

July 22, 2016

Solar wind forms the energy source for aurora explosions. How does the Earth's magnetosphere take in the energy of the solar wind? An international team led by Hiroshi Hasegawa and Naritoshi Kitamura (ISAS/JAXA) analyzed ...

Topsy-turvy motion creates light switch effect at Uranus

June 26, 2017

More than 30 years after Voyager 2 sped past Uranus, Georgia Institute of Technology researchers are using the spacecraft's data to learn more about the icy planet. Their new study suggests that Uranus' magnetosphere, the ...

Leaky atmosphere linked to lightweight planet

February 9, 2018

The Red Planet's low gravity and lack of magnetic field makes its outermost atmosphere an easy target to be swept away by the solar wind, but new evidence from ESA's Mars Express spacecraft shows that the Sun's radiation ...

Recommended for you

Astronomers discover giant relic of disrupted Tadpole galaxy

November 19, 2018

A team of astronomers from Israel, the U.S. and Russia have identified a disrupted galaxy resembling a giant tadpole, complete with an elliptical head and a long, straight tail, about 300 million light years away from Earth. ...

Exploding stars make key ingredient in sand, glass

November 19, 2018

We are all, quite literally, made of star dust. Many of the chemicals that compose our planet and our bodies were formed directly by stars. Now, a new study using observations by NASA's Spitzer Space Telescope reports for ...

A solar sibling identical to the sun

November 19, 2018

An international team led by Instituto de Astrofísica e Ciências do Espaço (IA) researcher Vardan Adibekyan used a novel method to detect solar siblings. The article was published in the journal Astronomy & Astrophysics.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.