Drug-producing bacteria possible with synthetic biology breakthrough

March 5, 2018 by Luke Walton, University of Warwick
Credit: CC0 Public Domain

Bacteria could be programmed to efficiently produce drugs, thanks to breakthrough research into synthetic biology using engineering principles, from the University of Warwick and the University of Surrey.

Led by the Warwick Integrative Synthetic Biology Centre at Warwick's School of Engineering and the Faculty of Health and Medical Sciences at the University of Surrey, new research has discovered how to dynamically manage the allocation of essential resources inside engineered —advancing the potential of synthetically programming cells to combat disease and produce .

The researchers have developed a way to efficiently control the distribution of ribosomes – microscopic 'factories' inside cells that build proteins that keep the cell alive and functional – to both the synthetic circuit and the host cell.

Synthetic circuitry can be added to cells to enhance them and make them perform bespoke functions – providing vast new possibilities for the future of healthcare and pharmaceuticals, including the potential for cells specially programmed to produce novel antibiotics and other useful compounds.

A cell only has a finite amount of ribosomes, and the synthetic circuit and host cell in which the circuitry is inserted both compete for this limited pool of resources. It is essential that there are enough ribosomes for both, so they can survive, multiply and thrive. Without enough ribosomes, either the circuit will fail, or the cell will die – or both.

Using the engineering principal of a feedback control loop, commonly used in aircraft flight control systems, the researchers have developed and demonstrated a unique system through which ribosomes can be distributed dynamically—therefore, when the synthetic circuit requires more ribosomes to function properly, more will be allocated to it, and less allocated to the , and vice versa.

Declan Bates, Professor of Bioengineering at the University of Warwick's School of Engineering and Co-Director, Warwick Integrative Synthetic Biology Centre (WISB) commented:

"Synthetic Biology is about making cells easier to engineer so that we can address many of the most important challenges facing us today—from manufacturing new drugs and therapies to finding new biofuels and materials. It's been hugely exciting in this project to see an engineering idea, developed on a computer, being built in a lab and working inside a living cell."

José Jiménez, Lecturer in Synthetic Biology at the University of Surrey's Faculty of Health and Medical Sciences:

"The ultimate goal of the selective manipulation of cellular functions like the one carried out in this project is to understand fundamental principles of itself. By learning about how cells operate and testing the constraints under which they evolve, we can come up with ways of engineering cells more efficiently for a wide range of applications in biotechnology"

Ribosomes live inside cells, and construct proteins when required for a cellular function. When a cell needs protein, the nucleus creates mRNA, which is sent to the ribosomes – which then synthesise the essential proteins by bonding the correct amino acids together in a chain.

Explore further: A synthetic cell that produces anti-cancer drugs within a tumor

More information: Alexander P. S. Darlington et al. Dynamic allocation of orthogonal ribosomes facilitates uncoupling of co-expressed genes, Nature Communications (2018). DOI: 10.1038/s41467-018-02898-6

Related Stories

Secrets of a little-known cancer ally revealed

February 14, 2018

Human cancers often have a little recognized ally— the increased size and number of a cell's organelles called the nucleolus. The nucleolus is where ribosomes, the cellular protein factories, are made. Ribosomes can also ...

Mimicking living cells: Synthesizing ribosomes

June 29, 2013

Synthetic biology researchers at Northwestern University, working with partners at Harvard Medical School, have for the first time synthesized ribosomes—cell structures responsible for generating all proteins and enzymes ...

Cells programmed like computers to fight disease

September 18, 2017

Cells can be programmed like a computer to fight cancer, influenza, and other serious conditions – thanks to a breakthrough in synthetic biology by the University of Warwick.

Recommended for you

Common weed killer linked to bee deaths

September 24, 2018

The world's most widely used weed killer may also be indirectly killing bees. New research from The University of Texas at Austin shows that honey bees exposed to glyphosate, the active ingredient in Roundup, lose some of ...

Custom circuits for living cells

September 24, 2018

A team of Caltech researchers has developed a biological toolkit of proteins that can be assembled together in different ways, like Legos, to program new behaviors in cells. As a proof-of-concept, they designed and constructed ...

Birds' voiceboxes are odd ducks

September 24, 2018

Birds sing from the heart. While other four-limbed animals like mammals and reptiles make sounds with voiceboxes in their throats, birds' chirps originate in a unique vocal organ called the syrinx, located in their chests. ...

Desert ants have an amazing odor memory

September 24, 2018

Scientists at the Max Planck Institute for Chemical Ecology used behavioral experiments to show that desert ants quickly learn many food odors and remember them for the rest of their lives. However, their memory for nest ...

Some female termites can reproduce without males

September 24, 2018

Populations of the termite species Glyptotermes nakajimai can form successful, reproducing colonies in absence of males, according to a study published in the open access journal BMC Biology.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.