System transforms 3-D structure of a protein into a 2-D contact map

March 28, 2018, Heidelberg Institute for Theoretical Studies

Proteins constantly move and change their conformation. Molecular dynamics typically answers the question of what the possible conformations of proteins are. Proteins, however, have a highly complicated and crowded structure, and understanding the changes in their behavior is a challenging task due to the high number of coordinates to monitor. Digesting the large amount of molecular data often involves creative 3-D visualization, but even with considerable effort, important details can be missed. This led to a dual problem; not only was data visualization a challenge, but scientists also ran the risk of overlooking aspects of their own results. A novel tool called CONAN (CONtact ANalysis), developed from the "Molecular Biomechanics" at HITS, can alleviate these issues through compressing this 3-D data into simpler 2-D images capturing the key interactions, named contact maps.

Contact maps measure inter-residue distances, thereby compressing 3-D structures into 2-D images. This often facilitates data interpretation and makes important changes easier to spot. These contact maps have usually only been used to study single structures as a single snapshot, but in fact they can easily be obtained for many structures, resulting in a contact map movie. This somehow extends the saying "a figure is worth more than 1000 words" into the dynamic regime, since it creates a multitude of possible contact-map snapshots out of one simulation, identifying conformational subpopulations and transitions.

Until now, contact maps-based analysis methods have been widely used only as understanding single structures, such as those in the protein data base (PDB). Even when the methods were generalized for dynamic simulations, the implementations were often various "ad hoc" analysis scripts, since there wasn't a standardized . This meant that the measured quantities and definitions were inconsistent and results weren't directly comparable. The new tool "CONAN" however is a standardized, easy-to-use package that allows several different types of analyses, for example including principal component analysis and cluster analysis.

The tool developed by the HITS researchers Csaba Daday and Frauke Gräter of the Molecular Biomechanics group as well as former group member Davide Mercadante therefore fills a gap and offers a comprehensive, user-friendly program requiring no programming experience that can help scientists performing calculations understand and present their data. Hopefully, this will lead to a more widespread use of these measures, and a more uniform set of definitions. The tool is open access and free of use. The team at HITS also constantly optimizes the software and is open to feedback from the community.

Explore further: A versatile, integrated workflow for interaction proteomics

More information: Davide Mercadante et al. CONAN: A Tool to Decode Dynamical Information from Molecular Interaction Maps, Biophysical Journal (2018). DOI: 10.1016/j.bpj.2018.01.033

Related Stories

A versatile, integrated workflow for interaction proteomics

March 22, 2018

Proteins do not function in isolation, and their interactions with other proteins define their cellular functions. Therefore, detailed understanding of protein-protein interactions (PPIs) is the key for deciphering regulation ...

Protein origami: Quick folders are the best

January 31, 2013

The evolutionary history of proteins shows that protein folding is an important factor. Especially the speed of protein folding plays a key role. This was the result of a computer analysis carried out by researchers at the ...

New studies explore 3-D structure of DNA

August 1, 2016

In a set of papers published last week in Cell Systems, Dr. Erez Lieberman Aiden, assistant professor of molecular and human genetics and McNair Scholar at Baylor College of Medicine and director of the Center for Genome ...

Folding biomolecule model shows how form dictates function

September 13, 2017

Proteins are fundamental macromolecules for life, with a diversity of functions, like acting as channels through cellular walls, catalysers, DNA benders, etc. When it comes to these functions, what matters is the layout of ...

Recommended for you

New theory shows how strain makes for better catalysts

April 20, 2018

Brown University researchers have developed a new theory to explain why stretching or compressing metal catalysts can make them perform better. The theory, described in the journal Nature Catalysis, could open new design ...

Machine-learning software predicts behavior of bacteria

April 19, 2018

In a first for machine-learning algorithms, a new piece of software developed at Caltech can predict behavior of bacteria by reading the content of a gene. The breakthrough could have significant implications for our understanding ...

Spider silk key to new bone-fixing composite

April 19, 2018

UConn researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

GLUT5 fluorescent probe fingerprints cancer cells

April 19, 2018

Determining the presence of cancer, as well as its type and malignancy, is a stressful process for patients that can take up to two weeks to get a diagnosis. With a new bit of technology—a sugar-transporting biosensor—researchers ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.