Researchers show a cancer defense mechanism could be turned back to attack tumors

March 6, 2018, University of California, Los Angeles
In these time-lapse images, chimeric antigen receptors respond to a soluble cytokine, triggering T-cell activation. Credit: ZeNan Chang and Michael Lorenzini

UCLA engineers and scientists have engineered a type of synthetic protein—a chimeric antigen receptor, or CAR, that responds to soluble protein targets. The advance shows great promise for helping the body's immune system seek out and destroy cancer because it could boost the effectiveness of immunotherapies against solid tumors that are otherwise highly resistant to the body's immune response.

The study was published in Nature Chemical Biology.

"We have generated the first example of a CAR that can help white blood —specifically T cells—convert tumor-produced proteins from suppressants, or 'downers' for our immune system, into stimulants that trigger robust attacks on the tumor cells," said Yvonne Chen, the study's principal investigator, and an assistant professor of chemical and biomolecular engineering at the UCLA Samueli School of Engineering. "This could lead to new therapeutic applications, particularly in the treatment of solid tumors."

Solid tumors—tumors that grow as masses in the body—are difficult to destroy because they have a variety of defenses, including an ability to secrete proteins that disable the immune system. Overcoming those defenses has been a major focus of cancer biology research. One promising method for doing that is CAR-modified T-cell therapy. In 2017, the FDA approved such therapies to treat blood cancers, such as leukemia or lymphoma. However, CAR-modified T-cell therapy has not been as successful for treating .

The immune system naturally seeks out diseased or that could harm the body. On the surfaces of those cells are proteins called antigens. Meanwhile, T cells—white blood cells that can destroy abnormal cells—have corresponding proteins, called receptors, that can recognize and bind to specific antigens. When that binding occurs, it triggers a series of chemical and biophysical processes that activate the T cell to neutralize the harmful cells.

Solid tumors have the ability to secrete soluble proteins called immunosuppressive cytokines, which inactivate immune cells, including T cells. This creates a microenvironment that is highly hostile to and protects the tumor.

Based on that knowledge, the researchers hypothesized that they could overcome that defense mechanism by altering the T cells' response to the immunosuppressive cytokines. Instead of shutting down, the engineered T cells would react to the cytokines by mounting an attack on the tumor cells.

Scientists knew that CAR signaling can trigger T-cell activation and anti- effects, so the researchers proposed engineering CARs on the T cells to signal in response to immunosuppressive cytokines. However, CARs normally respond to antigens presented on the surface of cells, not to antigens that float around in the environment.

The researchers discovered how to engineer CARs that could respond not only to surface-bound antigens, but also to soluble proteins, including immunosuppressive cytokines. The researchers placed the CARs they developed on T cells, and the modified T cells became activated in response to soluble antigens.

The new approach enabled T cells to convert the cancer's own defense mechanism into a weapon that could intensify the immune system's attack on .

The researchers also discovered that, in order for a T cell to activate, two of the CARs on its surface must both bind to a single soluble . And they demonstrated the versatility of their approach by engineering CARs that responded to several different soluble proteins, including transforming growth factor beta, or TGF-beta, a potent immunosuppressive cytokine. TGF-beta could be one target for future immunotherapies to treat cancer.

Explore further: Stem cell vaccine immunizes lab mice against multiple cancers

More information: ZeNan L Chang et al. Rewiring T-cell responses to soluble factors with chimeric antigen receptors, Nature Chemical Biology (2018). DOI: 10.1038/nchembio.2565

Related Stories

Stem cell vaccine immunizes lab mice against multiple cancers

February 15, 2018

Stanford University researchers report that injecting mice with inactivated induced pluripotent stem cells (iPSCs) launched a strong immune response against breast, lung, and skin cancers. The vaccine also prevented relapses ...

New strategy for multiple myeloma immunotherapy

November 27, 2017

In recent decades monoclonal antibody-based treatment of cancer has been established as one of the most successful therapeutic strategies for both solid tumors and blood cancers. Monoclonal antibodies (mAb), as the name implies, ...

Recommended for you

After a reset, Сuriosity is operating normally

February 23, 2019

NASA's Curiosity rover is busy making new discoveries on Mars. The rover has been climbing Mount Sharp since 2014 and recently reached a clay region that may offer new clues about the ancient Martian environment's potential ...

Study: With Twitter, race of the messenger matters

February 23, 2019

When NFL player Colin Kaepernick took a knee during the national anthem to protest police brutality and racial injustice, the ensuing debate took traditional and social media by storm. University of Kansas researchers have ...

Solving the jet/cocoon riddle of a gravitational wave event

February 22, 2019

An international research team including astronomers from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has combined radio telescopes from five continents to prove the existence of a narrow stream of material, ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.