Theoretical physicists manipulate light with nanoscale objects

February 6, 2018 by Steve Carr, University of New Mexico
Credit: University of New Mexico

For years, scientists have long wrestled with the control and manipulation of light, a long-standing scientific ambition with major implications for the development of technology. With the growth in nanophotonics, scientists are making gains faster than ever exploiting structures with dimensions comparable to the wavelength of light.

Scientists at The University of New Mexico studying the field of nanophotonics are developing new perspectives never seen before through their research. In turn, the understanding of these theoretical concepts is enabling physical scientists to create more efficient nanostructures.

The research, says Assistant Professor Alejandro Manjavacas, in the Department of Physics and Astronomy at The University of New Mexico in a paper titled "Hybridization of Lattice Resonances," investigates how periodic arrays of nanospheres or atoms interact with light. These systems are made by repeating a unit cell periodically, much like a chessboard is made by repeating two differently colored squares in a pattern. Previously, the majority of the research focused only on structures with made of a single element, like if every square on the chessboard was a single color. Their research goes beyond this, allowing for any number of colors as long as they are arranged in a repeating pattern.

"While contributing to the fundamental understanding of a plethora of new physical phenomena, this theoretical research effort will help understand how light interacts with nanoscale objects and will help set the foundations for the development of new mechanisms to manipulate light at the nanoscale, which is the key to realizing the next generation of nanophotonic applications," Manjavacas says in the paper published recently in ACS Nano, a top publication in the field of nanophotonics.

The overarching goal of the research was to open and further new paths in plasmonics, a field of research that focuses on understanding the interaction between light and metallic nanostructures, which the aim of developing new applications in nanophotonics. As part of this work, the scientists developed a powerful model to understand how ordered arrays of nanostructures interact with light. This model can be used to predict the optical response of ensembles of nanoparticles with very complicated patterns, which can be exploited to engineer optical properties useful for many applications:

"For example, these systems can constitute a versatile platform for developing compact biosensors capable of monitoring, in real time, the levels of different substances relevant for health care," said Manjavacas. "Further, they can also be used to enhance the performance of solar and to design more efficient photodetectors."

The details

As part of the research, Manjavacas and his team composed by Sebastian Baur, a visiting graduate student from Germany, and Stephen Sanders, a graduate student in Physics and Astronomy, investigated the of
periodic arrays of plasmonic nanoparticles with multi-particle unit cells. Specifically, they sought to understand how the geometry of complex arrangements of plasmonic nanostructures can be harnessed to control their optical responses.

They studied arrays composed of two-particle unit cells, in which the interaction between the different particles can be canceled or maximized by controlling their relative position within the unit cell. They also found arrays whose response can be made either invariant to the polarization of the incident or strongly dependent on it. Both of these examples show how their complex geometries can be used to exert control over the response of the arrays.

Manjavacas and his team also explored systems with three- and four-particle unit cells, like a chessboard with three or four different kinds of colored squares, and showed that they can be designed to support resonances with complex response patterns in which different groups of particles in the unit cell can be selectively excited.

"The results of this work serve to advance our understanding of periodic arrays of nanostructures and provide a methodology to design periodic structures with engineered properties for applications in nanophotonics," he said. "In particular, we show that, by controlling the relative position of the particles within the unit cell, it is possible to completely manipulate the optical response of the system."

Explore further: Realizing highly efficient quantum dot LEDs with metallic nanostructures at low cost

More information: Sebastian Baur et al. Hybridization of Lattice Resonances, ACS Nano (2018). DOI: 10.1021/acsnano.7b08206

Related Stories

3-D nanoscale imaging made possible

December 15, 2017

Imaging at the nanoscale is important to a plethora of modern applications in materials science, physics, biology, medicine and other fields. Limitations of current techniques are, e.g. their resolution, imaging speed or ...

Self-assembled nanostructures can be selectively controlled

April 24, 2017

Plasmonic nanoparticles exhibit properties based on their geometries and relative positions. Researchers have now developed an easy way to manipulate the optical properties of plasmonic nanostructures that strongly depend ...

Recommended for you

Rubbery carbon aerogels greatly expand applications

March 19, 2018

Researchers have designed carbon aerogels that can be reversibly stretched to more than three times their original length, displaying elasticity similar to that of a rubber band. By adding reversible stretchability to aerogels' ...

Plasmons triggered in nanotube quantum wells

March 16, 2018

A novel quantum effect observed in a carbon nanotube film could lead to the development of unique lasers and other optoelectronic devices, according to scientists at Rice University and Tokyo Metropolitan University.

Zero field switching (ZFS) effect in a nanomagnetic device

March 16, 2018

An unexpected phenomenon known as zero field switching (ZFS) could lead to smaller, lower-power memory and computing devices than presently possible. The image shows a layering of platinum (Pt), tungsten (W), and a cobalt-iron-boron ...

Imaging technique pulls plasmon data together

March 16, 2018

Rice University scientists have developed a novel technique to view a field of plasmonic nanoparticles simultaneously to learn how their differences change their reactivity.


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.