Scalable two-dimensional materials advance future-gen electronics

February 13, 2018, Pennsylvania State University
False-colored scanning electron microscope (SEM) image of a radio-frequency field-effect transistor (RF-FET) composed of a 2-3 layer-thick epitaxially-grown tungsten diselenide (WSe2) active channel. Credit: Brian Bersch/Penn State

Since the discovery of the remarkable properties of graphene, scientists have increasingly focused research on the many other two-dimensional materials possible, both those found in nature and concocted in the lab. However, growing high quality, crystalline 2-D materials at scale has proven a significant challenge.

A pair of papers published online in two nanotechnology journals this month provide the basis for growing wafer-scale two-dimensional crystals for future electronic devices. In work led by Joan Redwing, director of the NSF-sponsored Two-Dimensional Crystal Consortium – Materials Innovation Platform, and professor of and engineering and electrical engineering, Penn State, researchers developed a multistep process to make single crystal atomically-thin films of tungsten diselenide across large-area sapphire substrates.

"Up until now, the majority of 2-D devices have been fabricated using small flakes that are exfoliated off of bulk crystals," Redwing said. "To develop a device-ready technology, you have to be able to make devices on large-area substrates and they have to have good crystal quality."

The process uses sapphire as the substrate because of its crystalline structure. This structure orients the film growth in a crystal pattern in a process called epitaxy. As small islands of the material form on the substrate and the substrate is heated, the islands spread out across the substrate in a uniform pattern forming a large-area film without gaps and with very few defects. The key advance was the use of gas source chemical vapor deposition to precisely control the island density and rate of spreading to achieve a single layer of the 2-D material.

Large-scale atomically-thin 2D films by gas source chemical vapor deposition. Credit: Xiaotian Zhang/Penn State

They published their work, "Diffusion-Controlled Epitaxy of Large Area Coalesced WSe2 Monolayers on Sapphire," in the journal Nano Letters.

In a related paper, "Realizing Large-Scale, Electronic-Grade Two-Dimensional Semiconductors," published online in the journal ACS Nano, a team led by Joshua Robinson, associate professor of science and engineering, Penn State, provides the foundational understanding to enable device-ready synthetic 2-D semiconductors based on these epitaxial large area films in future industrial-scale electronics.

"The primary significance of this work is we were able to achieve an understanding of the extrinsic factors that go into having a high-quality 2-D material," Robinson said. "What we found was that even when you grow oriented crystals on a surface, there are other factor that impact the ability to get high electron mobility or fast transistors."

In particular, they found that there is a strong interaction between the sapphire substrate and the monolayer film, with the substrate dominating the properties. To overcome these challenges, the researchers grew two or three layers, which improved the performance by factors of 20-100 times.

"This is the first real evidence of the effect of the on the transport properties of 2-D layers," Robinson said.

Explore further: Stretching to perfection of 2-D semiconductors

More information: Yu-Chuan Lin et al. Realizing Large-Scale, Electronic-Grade Two-Dimensional Semiconductors, ACS Nano (2018). DOI: 10.1021/acsnano.7b07059

Xiaotian Zhang et al. Diffusion-Controlled Epitaxy of Large Area Coalesced WSe2 Monolayers on Sapphire, Nano Letters (2018). DOI: 10.1021/acs.nanolett.7b04521

Related Stories

Stretching to perfection of 2-D semiconductors

November 15, 2017

Compressing a semiconductor to bring atoms closer together or stretching it to move them farther apart can dramatically change how electricity flows and how light is emitted. Scientists found an innovative way to compress ...

Strain-free epitaxy of germanium film on mica

November 17, 2017

Germanium, an elemental semiconductor, was the material of choice in the early history of electronic devices, before it was largely replaced by silicon. But due to its high charge carrier mobility—higher than silicon by ...

Stenciling with atoms in 2-D materials possible

May 1, 2017

The possibilities for the new field of two-dimensional, one-atomic-layer-thick materials, including but not limited to graphene, appear almost limitless. In new research, Penn State material scientists report two discoveries ...

'Mind the gap' between atomically thin materials

December 24, 2014

When it comes to engineering single-layer atomic structures, "minding the gap" will help researchers create artificial electronic materials one atomic layer at a time, according to a team of materials scientists.  

Recommended for you

Reinventing the inductor

February 21, 2018

A basic building block of modern technology, inductors are everywhere: cellphones, laptops, radios, televisions, cars. And surprisingly, they are essentially the same today as in 1831, when they were first created by English ...

Researchers create first superatomic 2-D semiconductor

February 16, 2018

Atoms are the basic building blocks of all matter—at least, that is the conventional picture. In a new study, researchers have fabricated the first superatomic 2-D semiconductor, a material whose basic units aren't atoms ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.