Study of salts in water causing stir

February 2, 2018, Argonne National Laboratory
Study of salts in water causing stir
A research team led by Argonne’s Giulia Galli has gleaned new insights about the structure of salt water by simulating the liquid at the molecular level with the Mira supercomputer, housed at the Argonne Leadership Computing Facility. Credit: Giulia Galli and Alex Gaiduk/Institute for Molecular Engineering

New insight into science that seems, on its surface, exceedingly simple—what happens when you add salt to water—could ultimately lead to a better understanding of biochemical processes in cells and perhaps advance sources of clean energy.

An article published in the Journal of Physical Chemistry Letters on that topic earlier in 2017 has generated considerable interest, according to the journal's editors.

"One of the questions that has puzzled researchers for decades is how far ions affect the of saline water, the same kind of solutions that are present in our bodies," said Giulia Galli, a Liew Family professor in molecular engineering at the University of Chicago. One popular view is that ions have a local effect on the structure of water, causing hydrogen bonds to form or break only close to the ion. But it seems that isn't always the case.

"The reason this problem was still open is that experiments do not provide direct detailed information about the structure of the liquid at the molecular level," Alex Gaiduk said. "Instead, they provide averaged information coming from the entire molecular system, which is often hard to interpret."

Meanwhile, molecular simulations provide first-hand information about the molecular structure of the liquid and can shed light on the ions' influence on the water structure. Determined to answer these questions, Gaiduk and Galli turned to the Argonne Leadership Computing Facility (ALCF), a DOE Office of Science User Facility capable of carrying out simulations that require massive computational capabilities—10 to 100 times more powerful than those of systems typically used for scientific research.

Gaiduk and Galli used the ALCF to simulate in water, and gathered extensive amounts of data. They analyzed the results and discovered that the sodium ion indeed has only a local effect on water structure, while the chlorine ion has a farther-reaching effect, modifying the water structure at least up to a nanometer away from the ion. (A nanometer is one-billionth of a meter.)

"We have provided important information about the structure of water in the presence of dissolved salts—namely that some ions, including chloride, have a long-range effect while others, such as sodium, do not," Gaiduk said. "We used non-empirical simulation methods and a rather sophisticated choice of molecular signatures of the water structure."

The research provides a new fundamental understanding of sodium chloride in water. This is one of the aqueous systems used in photoelectrochemical cells. These cells are used to split water into hydrogen and oxygen, a technology that has long-term potential as a source. Additional research will be required to determine how this new understanding might be used to improve the technology, Galli said.

Their finding could also prove valuable for biochemistry on a number of fronts.

"Processes like protein folding, crystallization and solubility are at the core of all biological and biochemical processes that essentially define life," said Gaiduk, adding that this finding may contribute to explaining the solubility of proteins. "Scientists can now perhaps develop new computational models to describe in cells, and this could lead to the development of new drugs."

However, the authors concluded that the subtle modifications of the structure of water by the ions—even chlorine—are probably insufficient to explain the different solubility of biomolecules in pure and salty water. Clearly researchers have more work to do before they can fully understand and model interactions of ions with the functional groups of proteins. However, this technique for analyzing the hydrogen bond network of water is a first step to help scientists understand how the structure of water changes with the addition of salt.

Using the results obtained by Gaiduk and Galli, another research group has developed a new model that correctly describes the effect of ions on the structure of . Their findings are detailed in the Aug. 31, 2017 issue of the Journal of Physical Chemistry B.

Explore further: Electrons in the water

More information: Alex P. Gaiduk et al. Local and Global Effects of Dissolved Sodium Chloride on the Structure of Water, The Journal of Physical Chemistry Letters (2017). DOI: 10.1021/acs.jpclett.7b00239

Related Stories

Electrons in the water

January 22, 2018

It's a popular tradition to throw coins into fountains in the hopes of having wishes granted. But what would happen if you could "throw" electrons into the water instead? That is, what happens shortly after an electron is ...

Researchers make headway in desalination technology

October 13, 2017

Engineers at the University of Illinois have taken a step forward in developing a saltwater desalination process that is potentially cheaper than reverse osmosis and borrows from battery technology. In their study, the researchers ...

Scientists successfully test new water simulation protocol

October 10, 2017

Water may seem like a known quantity. There are, however, still aspects of water that remain unknown to scientists. Pure water, that is water without any additional trace material, still has complex properties that are yet ...

Recommended for you

Data storage using individual molecules

December 17, 2018

Researchers from the University of Basel have reported a new method that allows the physical state of just a few atoms or molecules within a network to be controlled. It is based on the spontaneous self-organization of molecules ...

Progress in super-resolution microscopy

December 17, 2018

Going deeper and deeper into cells with the microscope; imaging the nucleus and other structures more and more accurately; getting the most detailed views of cellular multi-protein complexes: All of these are goals pursued ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.