Pulsating aurora mysteries uncovered with help from NASA's THEMIS mission

February 20, 2018 by Mara Johnson-Groh, NASA's Goddard Space Flight Center
Illustration of three THEMIS satellites and Earth's magnetosphere. Credit: NASA

Sometimes on a dark night near the poles, the sky pulses a diffuse glow of green, purple and red. Unlike the long, shimmering veils of typical auroral displays, these pulsating auroras are much dimmer and less common. While scientists have long known auroras to be associated with solar activity, the precise mechanism of pulsating auroras was unknown. Now, new research, using data from NASA's Time History of Events and Macroscale Interactions during Substorms—or THEMIS—mission and Japan's Exploration of energization and Radiation in Geospace—shortened to ERG, or also known as Arase—satellite, has finally captured the missing link thought responsible for these auroras. The answer lies in chirping waves that rhythmically pulse the particles that create the auroras.

Earth's magnetic bubble—the magnetosphere—protects the planet from high-energy radiation coming from the Sun and interstellar space, but during particularly strong solar events, can slip through. Once inside, the particles and the energy they carry are stored on the nightside of the magnetosphere, until an event, known as a substorm, releases the energy. The electrons are then sent speeding down into Earth's upper atmosphere where they collide with the other particles and produce the characteristic glow.

Pulsating auroras, however, have a slightly different cause. The magnetosphere is home to a type of plasma wave known as whistler mode chorus. These waves have characteristic rising tones—reminiscent of the sounds of chirping birds—and are able to efficiently disturb the electrons. When these waves make their appearance within the magnetosphere, some of the electrons scattered by the wave careen down into Earth's atmosphere, causing the pulsating auroras.

Illustration of the ERG satellite in orbit. Credit: ISAS/JAXA

While scientists have long believed this mechanism to be responsible for pulsating auroras, they had no definitive proof until now. The multipoint observations from the ERG satellite and ground-based all-sky cameras from the THEMIS mission allowed scientists to pinpoint the cause and effect, seeing the event from start to end. The results were published in the journal Nature.

Research done with NASA's ground-based camera and Japan's spacecraft in the near-Earth laboratory has applications further afield. Chorus waves have been observed around other planets in the solar system, including Jupiter and Saturn. Likely, the processes observed around Earth can help explain auroral features on these gas giants as well as on planets around other stars. The results also help scientists better understand how can influence electrons—something that occurs in processes across the universe.

Explore further: Scientists directly observe electron dynamics of the Northern Lights

More information: S. Kasahara et al. Pulsating aurora from electron scattering by chorus waves, Nature (2018). DOI: 10.1038/nature25505

Related Stories

NASA measuring the pulsating aurora

October 7, 2015

Thanks to a lucky conjunction of two satellites, a ground-based array of all-sky cameras, and some spectacular aurora borealis, researchers have uncovered evidence for an unexpected role that electrons have in creating the ...

Hubble spots auroras on Uranus

April 10, 2017

This is a composite image of Uranus by Voyager 2 and two different observations made by Hubble—one for the ring and one for the auroras.

Hubble captures vivid auroras in Jupiter's atmosphere

June 30, 2016

Astronomers are using the NASA/ESA Hubble Space Telescope to study auroras—stunning light shows in a planet's atmosphere—on the poles of the largest planet in the Solar System, Jupiter. This observation programme is supported ...

Recommended for you

NASA's First Image of Mars from a CubeSat

October 23, 2018

NASA's MarCO mission was designed to find out if briefcase-sized spacecraft called CubeSats could survive the journey to deep space. Now, MarCO—which stands for Mars Cube One—has Mars in sight.

Gravitational waves could shed light on dark matter

October 22, 2018

The forthcoming Laser Interferometer Space Antenna (LISA) will be a huge instrument allowing astronomers to study phenomena including black holes colliding and gravitational waves moving through space-time. Researchers from ...

Astronomers propose a new method for detecting black holes

October 22, 2018

A stellar mass black hole is a compact object with a mass greater than three solar masses. It is so dense and has such a powerful force of attraction that not even light can escape from it. They cannot be observed directly, ...

Scientist explores a better way to predict space weather

October 22, 2018

Findings recently published by a Southwest Research Institute (SwRI) space scientist shed new light on predicting the thermodynamics of solar flares and other "space weather" events involving hot, fast-moving plasmas.

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

cantdrive85
1 / 5 (1) Feb 24, 2018
Once again the answer is electricity. Electricity is not the by-product, it is the progenitor of just about every plasma process known. We live in an Electric Universe!

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.