Mapping the first family tree for tropical forests

February 5, 2018, University of California - Riverside
A phylogenic classification of the world's tropical forests revealed five major regions. Credit: UC Riverside.

More than 100 researchers have collaborated to classify the world's tropical forests according to their evolutionary history, a process that will help researchers predict the resilience or susceptibility of different forests to global environmental changes.

The results, culled from almost 1 million different tree samples from 15,000 tree , have uncovered a shared ancestry between thousands of miles apart and previously believed to be unrelated. Published this week in the Proceedings of the National Academy of Sciences, the study describes an international, grassroots effort to collect and analyze data from more than 400 geographic coordinates across the tropics, a region that comprises 40 percent of the Earth's surface.

The study was led by Ferry Slik, an associate professor at the Universiti Brunei Darussalam in Brunei. Janet Franklin, a distinguished professor of biogeography at the University of California, Riverside, coordinated the interpretation and reporting of the data, which is publicly available as an open access article.

Franklin said the new classification scheme's value comes from the inclusion of ancestral information about the tree samples (gleaned from DNA analyses), rather than the "snapshot" of tree biodiversity that is obtained from recording a plant's species.

"When ecologists study biodiversity, they look at the present day by identifying the range of species in a particular forest. However, without going deeper into a plant's history by looking at its family tree, each species is considered separate and unrelated," Franklin said. "By adding the between species, however, we suddenly have a measure of how similar species are to each other. This means that we were able to do a much more detailed and realistic comparison between forest sites than previously possible."

The study revealed five major tropical forest regions: Indo-Pacific, Subtropical, African, American, and Dry Forests, which are found at the boundaries between tropical and dry climates.

The study also showed the evolutionary relationships between the forests. One surprising finding was that tropical forests in Africa and South America are closely related, with most of the differences between them occurring within the last 100 million years.

"An African tropical is evolutionally more similar to tropical forests in the New World than to forests in the Indo-Pacific," Franklin said. "While this was somewhat unexpected, it likely reflects the breaking apart of South America and Africa resulting in the formation of the Atlantic Ocean that started approximately 140 million years ago."

UC Riverside's Janet Franklin conducting field work in a tropical dry forest in The Bahamas. Credit: UC Riverside

Researchers also found that related subtropical forests exist in two distinct regions: East Asia and Central/South America. "These regions share the same temperate climate and, even though they are not geographically close, their forests share common ancestors, which is a bit of a mystery," Franklin said. "However, it may be that we are actually looking at remnants of the once extensive tropical forests that ranged from North America all the way to Europe and Asia. When Earth's climate cooled down these forests mostly disappeared, but parts seem to have survived in Asia and America."

The researchers hope an understanding of the diversity and composition of the tropical forests will help them anticipate region-specific responses to global environmental change.

"Different forests may be more vulnerable or resilient to climate change and deforestation, so if we understand the similarities and differences between forests it will help inform conservation efforts," Franklin said.

Explore further: Putting the P in photosynthesis of tropical forests

More information: J. W. Ferry Slik el al., "Phylogenetic classification of the world's tropical forests," PNAS (2018). www.pnas.org/cgi/doi/10.1073/pnas.1714977115

Related Stories

Putting the P in photosynthesis of tropical forests

February 5, 2018

How forests in Panama and elsewhere grow, decline, and recover affects carbon dioxide levels in the atmosphere and human welfare. Scientists are investigating whether computational models of these forests could be improved ...

How climate change may be impacting the world's tropical forests

February 22, 2016

New research suggests that multi-year droughts will significantly alter the structure, composition, and dynamics of second-growth tropical forests, which have re-grown after cessation of agricultural activity or a major disturbance ...

Recommended for you

Matter waves and quantum splinters

March 25, 2019

Physicists in the United States, Austria and Brazil have shown that shaking ultracold Bose-Einstein condensates (BECs) can cause them to either divide into uniform segments or shatter into unpredictable splinters, depending ...

How tree diversity regulates invading forest pests

March 25, 2019

A national-scale study of U.S. forests found strong relationships between the diversity of native tree species and the number of nonnative pests that pose economic and ecological threats to the nation's forests.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.