New tool to assess largely ignored risk in pharmaceutical industry

January 5, 2018, Cardiff University

A new method to test the likelihood of a drug turning into a potentially harmful version of itself when it enters the body has been developed by researchers at Cardiff University.

In collaboration with Liverpool John Moores University and AstraZeneca, the team have developed a simple approach to trawl through large databases of pharmaceutical drugs and assess the likely risk of a undergoing racemisation – a process in which a drug flips into a mirror image of itself and becomes either inert or potentially dangerous.

It is the first time that a quantitative for this process has been developed.

Publishing their new findings in the leading chemistry journal Angewandte Chemie, the team believe the new method could potentially lead to a significant reduction in the financial risk associated with drug development by identifying at-risk drug candidates early on in the production process, eventually leading to the efficient development of safe medication.

Drug compounds often exist in either a right- or left-handed form, with both forms having an identical chemical composition but a structure that is a non-superimposable mirror image of one another. These compounds, known as enantiomers, are much like our right and left hands – they have the same structure that completely mirrors one another, but it is impossible to perfectly fit one on top of the other with both palms facing up.

Drugs can contain both right- and left-hand versions of a compound, but often only one of a drug's enantiomers is responsible for the desired physiologic effects, while the other enantiomer is less active, inactive, or can sometimes produce adverse effects.

The most famous example of this is the sedative drug thalidomide, which was discovered by the German company Chemie Grünenthal and sold in a number of countries across the world from 1957 until 1961. It was withdrawn from the market when it was found to cause of birth defects. One enantiomer caused the desirable sedative effects, while the other, unavoidably present, enantiomer caused the .

Since the thalidomide crisis, drug developers have strived to create drugs containing only one enantiomer.

However, it's possible that a single enantiomer can rapidly flip to the of itself when it enters the body, through a process known as racemisation. This transformation is thought to be caused by the drug's interaction with basic compounds in the water in the body.

In their study, the team set up experiments in which they simulated the chemical conditions of the human body and introduced a number of drugs to the system, monitoring the rate at which the different drugs underwent racemisation. Using these results, they were able to generate a simple mathematical model that could quickly predict the rate of racemisation in any drug compound, subsequently indicating how safe and productive that drug would be if administered.

Lead author of the study Dr. Niek Buurma, from Cardiff University's School of Chemistry, said: "Following the thalidomide disaster, researchers worldwide have focussed on making compounds enantioselectively – that is containing just one .

"However, while compounds are routinely tested to ensure they are inherently stable under physiological conditions, not much thought has been given as to how to prevent configurational instability at the design stage, using suitable predictive models."

"We believe that this risk-assessment will make it possible to manufacture safer medication by helping the pharmaceutical industry to quickly spot medication that will fail during development and focus their efforts on that are more likely to work."

Explore further: Chemists devise new way to prepare molecules for drug testing

More information: Andrew Ballard et al. Quantitative Prediction of Rate Constants for Aqueous Racemization To Avoid Pointless Stereoselective Syntheses, Angewandte Chemie International Edition (2017). DOI: 10.1002/anie.201709163

Related Stories

Chemists devise new way to prepare molecules for drug testing

August 15, 2013

(Phys.org) —James Bond had his reasons for ordering his martinis "shaken, not stirred." Similarly, drug manufacturers need to make sure the molecules in a new drug are arranged in an exact manner, lest there be dire consequences. ...

Eliminating the 'Twin'

August 2, 2006

A University of Arkansas researcher has received a grant to study the dynamics of synthesizing molecules with the same "handedness."

Taming the molecule's Dr. Jekyll and Mr. Hyde

June 14, 2011

Many organic molecules are non-superimposable with their mirror image. The two forms of such a molecule are called enantiomers and can have different properties in biological systems. The problem is to control which enantiomer ...

Bacteria convert wastewater chemicals into toxic form

December 5, 2011

(PhysOrg.com) -- While traces of pharmaceutical compounds are commonly present in wastewater, interactions with bacteria during the treatment process could transform them from non-toxic to toxic forms, a new study suggests.

Recommended for you

Heterometallic copper-aluminum super atom discovered

September 26, 2018

On the outside, a cluster of 55 copper and aluminum atoms looks like a crystal, but chemically, it has the properties of an atom. The heterometallic superatom, which chemists of the Technical University of Munich (TUM) have ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.