Improving the piezoelectric microscopy characterization of ceramic materials

January 26, 2018, CSIC
Figure 1: Side view of the two types of AFM probes used. The one at the right is a ultra-long tip which diminish the electrostatic interaction between the cantilever and the sample. Compared to the standard tip-which is images at the right side, the taller tip provides a cleaner piezoresponse signal in order to acquire the piezoelectric response of the material. Credit: CSIC

A team of researchers from ICMAB has proved that unconventional AFM probes are suitable for acquiring a true piezoelectric signal in piezoresponse force microscopy. The work, titled "Diminish electrostatic in piezoresponse force microscopy through longer or ultra-stiff tips," is published in Applied Surface Science.

Piezoresponse microscopy is a technique used in piezoelectrics. Each year, almost 300 manuscripts included this technique in their research, and the piezoelectric community publishes more than 5000 papers yearly.

In this work, researchers tested nearly every single AFM conductive available on the market using a novel method that quantifies the electrostatic contribution in their measurements. The method relies on solving the correlation function that describes the mathematical operations that a lock-in amplifier performs to acquire the signals. After the theoretical description, the same sample is studied with AFM tips available commercially, through the use of two distinct type of tests.

In the first , the researchers incremented the piezoelectric signal while maintaining a constant electrostatic contribution. By doing this, the mount of the piezoelectric signal increases, and hence, the changes in the final results are dramatically different. From this test, it is found that longer tips provide the cleaner signal from the overall set of probes used. These results are confirmed through the use of independent experiments that corroborates the first results. The implementation of this solution can be used by any AFM manufacturer.

Figure 2: Comparison of the piezoelectric signal acquired with different probes tests. In these images, the higher the contrast, the better. It is seen that longer and ultra-stiff tips provides the very best signal of the overall commercially available tips. Credit: CSIC

Explore further: Molecular Imaging of Cells Likely with New Take on Atomic Force Microscopy

More information: A. Gomez et al. Diminish electrostatic in piezoresponse force microscopy through longer or ultra-stiff tips, Applied Surface Science (2018). DOI: 10.1016/j.apsusc.2018.01.080

Related Stories

Negative piezoelectric effect is not so rare after all

November 30, 2017

(—The piezoelectric effect, which causes a material to expand along the direction of an applied electric field, is common in many materials and used in a variety of technologies, from medical ultrasound to vibration-powered ...

Recommended for you

Lipid droplets play crucial roles beyond fat storage

August 14, 2018

Lipid droplets: they were long thought of merely as the formless blobs of fat out of which spare tires and muffin tops were made. But these days, they're "a really hot area of research," says Michael Welte, professor and ...

Transforming gas into fuels with better alloys

August 14, 2018

Technological advances in oil and gas well stimulation over the past decade now allow for the production of natural gas from shale gas trapped in rock formations underground. With the sudden increase in the availability of ...

Bacteria-fighting polymers created with light

August 14, 2018

Hundreds of polymers that could kill drug-resistant superbugs in novel ways can be produced and tested with light, using a method developed at the University of Warwick. The new methodology may identify antimicrobials for ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.