Pathway opens to minimize waste in solar energy capture

January 22, 2018, ARC Centre of Excellence in Exciton Science
Photon energy splitting is done directly by two molecules, not via an excimer state (in red). Singlet fission materials must avoid excimer formation to reach full potential in enhancing photovoltaic energy conversion. Credit: Professor Timothy Schmidt

Researchers at the ARC Centre of Excellence in Exciton Science have made an important discovery with significant implications for the future of solar cell material design.

The team, led by Professor Timothy Schmidt at UNSW, has been looking at ways to capture the of visible light that is currently wasted due to the limitations of silicon, which is only able to access approximately 25% of the . To illustrate, silicon on its own is only able to use of about half the energy of green light, which is the peak of the solar spectrum in terms of energy availability.

One of the ways to reduce this waste is through the design of materials that can be coated on top of silicon to capture some of the energy of light that silicon cannot. By incorporating singlet exciton fission, a process that generates two excitons from a single photon, it is hoped that efficiencies can be boosted beyond 30%.

The work, published in Nature Chemistry, examines the role of a short-lived (~8 billionths of a second), excited molecular complex called an excimer in singlet exciton fission and overturns previous thinking by demonstrating that these singlet fission materials must avoid excimer formation to reach full potential in enhancing photovoltaic energy conversion.

Professor Schmidt explains, "As we look to find ways to bring down the cost of , we should be designing materials that avoid excimer formation."

"Singlet exciton fission has enormous promise for improving the efficiency of solar cells, but its dynamics are complex and not well understood. By comparing the fission process when it is run both forwards and in reverse, Schmidt, et al. have performed a remarkably simple test of theories for the mechanism of fission" comments Professor Marc A. Baldo, member of the Centre's International Scientific Advisory Committee and Director of the Center of Excitonics at MIT.

"Their result suggests that what had previously been considered as an intermediate in the process may in fact be a source of loss. With this understanding Schmidt, et al. propose an important new direction in our search for materials that enable higher efficiency solar cells."

Explore further: Solar energy gets a boost: Work on 'singlet fission' can increase solar cell efficiency by as much as 30 percent

More information: Endothermic singlet fission is hindered by excimer formation, Nature Chemistry (2018). nature.com/articles/doi:10.1038/nchem.2926

Related Stories

Two for one in solar power

November 17, 2013

Solar cells offer the opportunity to harvest abundant, renewable energy. Although the highest energy light occurs in the ultraviolet and visible spectrum, most solar energy is in the infrared. There is a trade-off in harvesting ...

Getting more electricity out of solar cells

May 7, 2014

(Phys.org) —When sunlight shines on today's solar cells, much of the incoming energy is given off as waste heat rather than electrical current. In a few materials, however, extra energy produces extra electrons—behavior ...

Recommended for you

Coffee-based colloids for direct solar absorption

March 22, 2019

Solar energy is one of the most promising resources to help reduce fossil fuel consumption and mitigate greenhouse gas emissions to power a sustainable future. Devices presently in use to convert solar energy into thermal ...

EPA adviser is promoting harmful ideas, scientists say

March 22, 2019

The Trump administration's reliance on industry-funded environmental specialists is again coming under fire, this time by researchers who say that Louis Anthony "Tony" Cox Jr., who leads a key Environmental Protection Agency ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.