The complexities of clouds and the seeds that make them

January 12, 2018, Chinese Academy of Sciences

Clouds are complicated. Each cloud formation depends on the timing of the water cycle, in which water evaporates from Earth's surface, condensates in the atmosphere and falls back down, as well as the types of aerosols in the atmosphere.

In an effort to understand exactly how the cloud micro- and macro-properties interact with atmospheric particles, a collaborative research team conducted a modeling study analyzing three well-documented weather systems that occurred in March of 2000 over the southern Great Plains in the United States.

The results were published in Advances of Atmospheric Sciences, and included in a special issue on aerosols, , radiation, precipitation, and their interactions. Scientists from the California Institute of Technology, Texas A&M University, Brookhaven National Laboratory, University of Arizona and McGill University contributed to the study.

"The results from this modeling study highlight the complexity of the -cloud-precipitation-radiation interactions that vary on a case-by-case basis," said Yuan Wang, first author on the paper and a research scientist in the division of geological and planetary sciences at the California Institute of Technology. "Aerosols are so small and mutable, so it's hard to quantify their impact."

Aerosols, commonly known as cloud seeds, are tiny particles of things such as sea salt or pollution in Earth's atmosphere.

Researchers found that different simulated aerosols had significant influence in each of the three systems, but other factors, such as solar radiation changes due to aerosol pertubations, also greatly contributed to cloud formation and development.

"This study has shown that studying the aerosol microphysical effect alone is insufficient to assess the changes of clouds in the real atmosphere, as the aerosol radiative effects can also produce profound impacts on cloud development and precipitation processes," Wang said.

In climate predictions, computer program can model global climates based on observational data or theoretical information. According to Wang, the global climate model is a good tool, but it doesn't fully appreciate the influence of aerosols. Its scale eclipses the microphysical properties of aerosols and their impact.

"We are still seeking the right way to represent aerosols and their effects in ," Wang said. "We're interested in the interactions between the microscale model and the global climate model, and we're working to bridge the scales between the two."

Global climate models are used to assess the Earth's future climate, but they may not provide the full picture.

"The impact of aerosols needs to be fully assessed," Wang said. "We should consider the complexities of aerosol-cloud interactions in the global in a smart way."

Explore further: Scientists examine how aerosol types influence cloud formation

More information: Yuan Wang et al, Aerosol microphysical and radiative effects on continental cloud ensembles, Advances in Atmospheric Sciences (2018). DOI: 10.1007/s00376-017-7091-5

Related Stories

Down-and-dirty details of climate modeling

May 4, 2011

For the first time, researchers have developed a comprehensive approach to look at aerosols—those fine particles found in pollution—and their effect on clouds and climate. Scientists from Pacific Northwest National ...

Tagging tiny particles in turbulent clouds

May 30, 2014

( —Hitching tiny atmospheric particles to cloud formation enables climate models to represent the particles' effects on convective storm systems. Scientists at Pacific Northwest National Laboratory and collaborators ...

Connecting the dots on aerosol details

July 27, 2011

Predicting future climate change hangs on understanding aerosols, considered the fine details in the atmosphere. Researchers at Pacific Northwest National Laboratory and the National Center for Atmospheric Research used a ...

Recommended for you

Evidence of earliest life on Earth disputed

October 17, 2018

When Australian scientists presented evidence in 2016 of life on Earth 3.7 billon years ago—pushing the record back 220 million years—it was a big deal, influencing even the search for life on Mars.

Arctic greening thaws permafrost, boosts runoff

October 17, 2018

A new collaborative study has investigated Arctic shrub-snow interactions to obtain a better understanding of the far north's tundra and vast permafrost system. Incorporating extensive in situ observations, Los Alamos National ...

Arctic ice sets speed limit for major ocean current

October 17, 2018

The Beaufort Gyre is an enormous, 600-mile-wide pool of swirling cold, fresh water in the Arctic Ocean, just north of Alaska and Canada. In the winter, this current is covered by a thick cap of ice. Each summer, as the ice ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.