New catalyst for making fuels from shale gas

January 8, 2018, University College London
New catalyst for making fuels from shale gas
STM imaging of reaction intermediates on Cu(111) and Pt/Cu SAA surfaces. Credit: Sykes

Methane in shale gas can be turned into hydrocarbon fuels using an innovative platinum and copper alloy catalyst, according to new research led by UCL (University College London) and Tufts University.

Platinum or nickel are known to break the in methane found in to make and other useful chemicals. However, this process causes 'coking' - the metal becomes coated with a carbon layer rendering it ineffective by blocking reactions from happening at the surface.

The new alloy is resistant to coking, so it retains its activity and requires less energy to break the bonds than other materials.

Currently, methane reforming processes are extremely energy intense, requiring temperatures of about 900 degrees Celsius. This new material could lower this to 400 degrees Celsius, saving energy.

The study, published today in Nature Chemistry, demonstrates the benefits of the new highly diluted alloy of in copper - a single atom alloy - in making useful chemicals from small hydrocarbons.

A combination of and catalysis experiments and powerful computing techniques were used to investigate the performance of the alloy. These showed that the platinum breaks the carbon-hydrogen bonds, and the copper helps couple hydrocarbon molecules of different sizes, paving the way towards conversion to fuels.

Study co-lead author, Professor Michail Stamatakis (UCL Chemical Engineering), said: "We used supercomputers to model how the reaction happens - the breaking and making of bonds in small molecules on the catalytic alloy surface, and also to predict its performance at large scales. For this, we needed access to hundreds of processors to simulate thousands of reaction events."

While UCL researchers traced the reaction using computers, Tufts chemists and chemical engineers ran surface science and micro-reactor experiments to demonstrate the viability of the new catalyst - atoms of platinum dispersed in a copper surface - in a practical setting. They found the was very stable and only required a tiny amount of platinum to work.

Study lead, Professor Charles Sykes of the Department of Chemistry in Tufts University's School of Arts & Sciences, said: "Seeing is believing, and our scanning tunnelling microscope allowed us to visualise how single platinum atoms were arranged in copper. Given that platinum is over $1,000 an ounce, versus copper at 15 cents, a significant cost saving can be made."

Together, the team shows that less energy is needed for the alloy to help break the bonds between carbon and hydrogen atoms in methane and butane, and that the alloy is resistant to coking, opening up new applications for the material.

Study co-lead author, Distinguished Professor Maria Flytzani-Stephanopoulos of the Department of Chemical and Biological Engineering in Tufts University's School of Engineering, said: "While model catalysts in surface science experiments are essential to follow the structure and reactivity at the atomic scale, it is exciting to extend this knowledge to realistic nanoparticle catalysts of similar compositions and test them under practical conditions, aimed at developing the catalyst for the next step - industrial application."

The team now plan on developing further catalysts that are similarly resistant to the coking that plagues metals traditionally used in this and other chemical processes.

Explore further: Locating the precise reaction path: Methane dissociation on platinum

More information: Pt/Cu single-atom alloys as coke-resistant catalysts for efficient C–H activation, Nature Chemistry (2018). DOI: 10.1038/nchem.2915 , nature.com/articles/doi:10.1038_nchem.2915

Related Stories

Researchers develop superior fuel cell material

August 24, 2012

Using a mixture of gold, copper and platinum nanoparticles, IBN researchers have developed a more powerful and longer lasting fuel cell material. This breakthrough was published recently in leading journal, Energy and Environmental ...

Harnessing light to drive chemical reactions

July 18, 2017

An exotic interaction between light and metal can be harnessed to make chemical reactions more sustainable, but the physics behind it has been widely debated in the field.

Recommended for you

Using bacteria to create a water filter that kills bacteria

January 18, 2019

More than one in 10 people in the world lack basic drinking water access, and by 2025, half of the world's population will be living in water-stressed areas, which is why access to clean water is one of the National Academy ...

Hand-knitted molecules

January 18, 2019

Molecules are usually formed in reaction vessels or laboratory flasks. An Empa research team has now succeeded in producing molecules between two microscopically small, movable gold tips – in a sense as a "hand-knitted" ...

Artificially produced cells communicate with each other

January 18, 2019

Friedrich Simmel and Aurore Dupin, researchers at the Technical University of Munich (TUM), have for the first time created artificial cell assemblies that can communicate with each other. The cells, separated by fatty membranes, ...

This computer program makes pharma patents airtight

January 17, 2019

Routes to making life-saving medications and other pharmaceutical compounds are among the most carefully protected trade secrets in global industry. Building on recent work programming computers to identify synthetic pathways ...

3-D culturing hepatocytes on a liver-on-a-chip device

January 17, 2019

Liver-on-a-chip cell culture devices are attractive biomimetic models in drug discovery, toxicology and tissue engineering research. To maintain specific liver cell functions on a chip in the lab, adequate cell types and ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.