Worm genomes reveal a link between humans and distant relatives

December 5, 2017, Okinawa Institute of Science and Technology
A nemertean worm (Notospermus geniculatus). Left: a contracted worm. Right: an extended worm. The nemertean body is usually highly contractible and extendable. Some nemertean species, such as Lineus longissimus, can reach 30m long. Credit: Okinawa Institute of Science and Technology Graduate University

Researchers from the Marine Genomics Unit at OIST, in collaboration with Okayama University, have decoded two worm genomes and found that they have several genetic similarities with vertebrates. This result is surprising, given that these groups are only distantly related.

More than 550 million years ago, a major group of called the bilaterians, animals with bilateral symmetry, underwent an evolutionary event in which they diverged into two groups, the protostomes and the deuterostomes. The deuterostomes include the vertebrates, comprising fish, birds, amphibians, reptiles and mammals, including humans. The deuterostomes also include some less-familiar animals such as sea urchins and starfish. The protostomes include several invertebrate groups such as insects, spiders, lobsters and flatworms. The worm species studied here belong to a special group within the protostomes called the lophotrochozoans.

Despite their obscure sounding name, lophotrochozoans represent more than one-third of known marine animals. This group includes earthworms, leeches, snails, oysters, octopuses, and other invertebrate groups and they play many important ecological roles.

Left: worm sampling locations. Right: the evolutionary relationships between the lophotrochozoans presented in the study, with their body structures shown on the right. Credit: Okinawa Institute of Science and Technology Graduate University

In a paper published in Nature Ecology & Evolution, the researchers analysed the genomes of two lophotrochozoan worm species, the nemertean Notospermus geniculatus, a ribbon worm, and the phoronid Phoronis australis, a horseshoe worm. They found that ribbon and horseshoe worms are evolutionarily closely related, despite looking very different.

Surprisingly, the researchers found that these worms, which are protostomes, share many gene families and gene arrangements with the deuterostomes, the group that includes the vertebrates. For example, they share genes that are involved in multicellularity and maintenance of the body's internal environment. They also share a common system for controlling head development; the same mechanism that controls vertebrate head patterning also controls the development of ribbon worm heads and horseshoe worm feeding tentacles. Other protostome groups, such as insects, have lost some of these genetic features.

Conversely, the researchers also found that many genomic features are only found in specific groups of worms, such as genes relating to toxin production and immunity. This shows the dual nature of animal evolution in which certain genes are conserved over evolutionary time whilst other change. Lead author of the paper, Yi-Jyun Luo, says, "We show here that animal genome evolution is a dynamic process."

The evolutionary relationships between the bilaterians, in which conserved molecular programs for head patterning are shown in orange. Credit: Okinawa Institute of Science and Technology Graduate University

Despite the enormous diversity of the animal kingdom, certain features are preserved between distantly-related groups. "It is fascinating to think that humans have retained some genetic programs which were encoded in our ancient ancestors hundreds of millions of years ago, maintaining a link between ourselves and our distant relatives," says Luo.

Explore further: Genomes of limpet, leech and worm put spotlight on lophotrochozoans

More information: Yi-Jyun Luo et al, Nemertean and phoronid genomes reveal lophotrochozoan evolution and the origin of bilaterian heads, Nature Ecology & Evolution (2017). DOI: 10.1038/s41559-017-0389-y

Related Stories

Xenacoelomorpha -- a new phylum in the animal kingdom

February 16, 2011

An international team of scientists including Albert Poustka from the Max Planck Institute for Molecular Genetics in Berlin has discovered that Xenoturbellida and the acoelomorph worms, both simple marine worms, are more ...

Simple marine worms distantly related to humans

February 9, 2011

Two groups of lowly marine worms are related to complex species including vertebrates (such as humans) and starfish, according to new research. Previously thought to be an evolutionary link between simple animals such as ...

Evolution of fan worm eyes

August 1, 2017

Scientists examining the multiple eyes found on the tentacles of fan worms have discovered they evolved independently from their other visual systems, specifically to support the needs of their lifestyle.

Recommended for you

New innovations in cell-free biotechnology

March 23, 2018

A Northwestern University-led team has developed a new way to manufacture proteins outside of a cell that could have important implications in therapeutics and biomaterials.

Genome of American cockroach sequenced for the first time

March 23, 2018

A team of researchers with South China Normal University and the Chinese Academy of Sciences has for the first time sequenced the genome of the American cockroach. In their paper published in the journal Nature Communications, ...

Intracellular transport in 3-D

March 23, 2018

Ludwig Maximilian University researchers have visualized the complex interplay between protein synthesis, transport and modification.


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.