Team maps magnetic fields of bacterial cells and nano-objects for the first time

December 21, 2017, Ames Laboratory
Ames Laboratory-led team maps magnetic fields of bacterial cells, nano-objects for the f
Left: Schematic of the off-axis electron holography using a fluid cell. Right: (A)Hologram of a magnetite nanocrystal chain released from a magnetotacticbacterium, and (B) corresponding magnetic induction map. Credit: US Department of Energy, Ames Laboratory

A research team led by a scientist from the U.S. Department of Energy's Ames Laboratory has demonstrated for the first time that the magnetic fields of bacterial cells and magnetic nano-objects in liquid can be studied at high resolution using electron microscopy. This proof-of-principle capability allows first-hand observation of liquid environment phenomena, and has the potential to vastly increase knowledge in a number of scientific fields, including many areas of physics, nanotechnology, biofuels conversion, biomedical engineering, catalysis, batteries and pharmacology.

"It is much like being able to travel to a Jurassic Park and witness dinosaurs walking around, instead of trying to guess how they walked by examining a fossilized skeleton," said Tanya Prozorov, an associate scientist in Ames Laboratory's Division of Materials Sciences and Engineering.

Prozorov works with biological and bioinspired magnetic nanomaterials, and faced what initially seemed to be an insurmountable challenge of observing them in their native liquid environment. She studies a model system, magnetotactic bacteria, which form perfect nanocrystals of magnetite. In order to best learn how bacteria do this, she needed an alternative to the typical electron microscopy process of handling solid samples in vacuum, where soft matter is studied in prepared, dried, or vitrified form.

For this work, Prozorov received DOE recognition through an Office of Science Early Career Research Program grant to use cutting-edge electron microscopy techniques with a liquid cell insert to learn how the individual magnetic nanocrystals form and grow with the help of biological molecules, which is critical for making artificial magnetic nanomaterials with useful properties.

To study magnetism in bacteria, she applied off-axis electron holography, a specialized technique that is used for the characterization of magnetic nanostructures in the , in combination with the liquid cell.

"When we look at samples prepared in the conventional way, we have to make many assumptions about their properties based on their final state, but with the new technique, we can now observe these processes first-hand," said Prozorov. "It can help us understand the dynamics of macromolecule aggregation, nanoparticle self-assembly, and the effects of electric and magnetic fields on that process."

"This method allows us to obtain large amounts of new information," said Prozorov. "It is a first step, proving that the mapping of magnetic fields in liquid at the nanometer scale with could be done; I am eager to see the discoveries it could foster in other areas of science."

The research is detailed in the paper, "Off-axis electron holography of and magnetic nanoparticles in liquid," by T. Prozorov, T.P. Almeida, A. Kovács, and R.E. Dunin-Borkowski: and published in the Journal of the Royal Society Interface.

Explore further: Bio-inspired materials—borrowing from nature's playbook

More information: Tanya Prozorov et al. Off-axis electron holography of bacterial cells and magnetic nanoparticles in liquid, Journal of The Royal Society Interface (2017). DOI: 10.1098/rsif.2017.0464

Related Stories

Bio-inspired materials—borrowing from nature's playbook

July 19, 2017

Nature provides myriad examples of unique materials and structures developed for specialized applications or adaptations. An interdisciplinary group of researchers at the U.S. Department of Energy's Ames Laboratory is trying ...

New bug eats sulfates, makes two kinds of magnet

December 23, 2011

(PhysOrg.com) -- A bacterium recently discovered near Death Valley has some very unusual properties according to a report published in the December 23 issue of Science magazine. While some ‘bugs’ are like migratory ...

Magnetism at nanoscale

August 3, 2015

As the demand grows for ever smaller, smarter electronics, so does the demand for understanding materials' behavior at ever smaller scales. Physicists at the U.S. Department of Energy's Ames Laboratory are building a unique ...

Recommended for you

Researchers study interactions in molecules using AI

October 19, 2018

Researchers from the University of Luxembourg, Technische Universität Berlin, and the Fritz Haber Institute of the Max Planck Society have combined machine learning and quantum mechanics to predict the dynamics and atomic ...

Pushing the extra cold frontiers of superconducting science

October 18, 2018

Measuring the properties of superconducting materials in magnetic fields at close to absolute zero temperatures is difficult, but necessary to understand their quantum properties. How cold? Lower than 0.05 Kelvin (-272°C).

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.