Origins of photosynthesis in plants dated to 1.25 billion years ago

December 20, 2017, McGill University
The Angmaat Formation above Tremblay Sound on the Baffin Island coast. Bangiomorpha pubescens fossils occur in this roughly 500-meter thick rock formation. Credit: Timothy Gibson

The world's oldest algae fossils are a billion years old, according to a new analysis by earth scientists at McGill University. Based on this finding, the researchers also estimate that the basis for photosynthesis in today's plants was set in place 1.25 billion years ago.

The study, published in the journal Geology, could resolve a long-standing mystery over the age of the fossilized algae, Bangiomorpha pubescens, which were first discovered in rocks in Arctic Canada in 1990. The microscopic organism is believed to be the oldest known direct ancestor of modern plants and animals, but its age was only poorly dated, with estimates placing it somewhere between 720 million and 1.2 billion years.

The new findings also add to recent evidence that an interval of Earth's history often referred to as the Boring Billion may not have been so boring, after all. From 1.8 to 0.8 billion years ago, archaea, bacteria and a handful of complex organisms that have since gone extinct milled about the planet's oceans, with little biological or environmental change to show for it. Or so it seemed. In fact, that era may have set the stage for the proliferation of more complex life forms that culminated 541 million years ago with the so-called Cambrian Explosion.

"Evidence is beginning to build to suggest that Earth's biosphere and its environment in the latter portion of the 'Boring Billion' may actually have been more dynamic than previously thought," says McGill PhD student Timothy Gibson, lead author of the new study.

Pinpointing the fossils' age

To pinpoint the fossils' age, the researchers pitched camp in a rugged area of remote Baffin Island, where Bangiomorpha pubescens fossils have been found There,despite the occasional August blizzard and tent-collapsing winds, they collected samples of black shale from rock layers that sandwiched the rock unit containing fossils of the alga. Using the Rhenium-Osmium (or Re-Os) dating technique, applied increasingly to sedimentary rocks in recent years, they determined that the rocks are 1.047 billion years old.

"That's 150 million years younger than commonly held estimates, and confirms that this fossil is spectacular," says Galen Halverson, senior author of the study and an associate professor in McGill's Department of Earth and Planetary Sciences. "This will enable scientists to make more precise assessments of the early evolution of eukaryotes," the celled organisms that include plants and animals.

Because Bangiomorpha pubescens is nearly identical to modern red algae, scientists have previously determined that the ancient alga, like green plants, used sunlight to synthesize nutrients from carbon dioxide and water. Scientists have also established that the , the structure in plant cells that is the site of photosynthesis, was created when a eukaryote long ago engulfed a simple bacterium that was photosynthetic. The eukaryote then managed to pass that DNA along to its descendants, including the and trees that produce most of the world's biomass today.

Origins of the chloroplast

Once the researchers had gauged the fossils' age at 1.047 billion years, they plugged that figure into a "molecular clock," a computer model used to calculate evolutionary events based on rates of genetic mutations. Their conclusion: the chloroplast must have been incorporated into eukaryotes roughly 1.25 billion years ago.

"We expect and hope that other scientists will plug this age for Bangiomorpha pubescens into their own molecular clocks to calculate the timing of important evolutionary events and test our results," Gibson says. "If other scientists envision a better way to calculate when the chloroplast emerged, the scientific community will eventually decide which estimate seems more reasonable and find new ways to test it."

Explore further: The origin of the chloroplast

More information: Timothy M. Gibson et al, Precise age of Bangiomorpha pubescens dates the origin of eukaryotic photosynthesis, Geology (2017). DOI: 10.1130/G39829.1

Related Stories

The origin of the chloroplast

August 14, 2017

A new study, led by the University of Bristol, has shed new light on the origin, timing and habitat in which the chloroplast first evolved.

Life on Earth may date back 3.95 bn years: study

September 27, 2017

Rudimentary life may have existed on Earth 3.95 billion years ago, a time when our infant planet was being bombarded by comets and had hardly any oxygen, researchers said Wednesday.

World's oldest plant-like fossils discovered

March 14, 2017

Scientists at the Swedish Museum of Natural History have found fossils of 1.6 billion-year-old probable red algae. The spectacular finds, publishing on 14 March in the open access journal PLOS Biology, indicate that advanced ...

Recommended for you

Matter waves and quantum splinters

March 25, 2019

Physicists in the United States, Austria and Brazil have shown that shaking ultracold Bose-Einstein condensates (BECs) can cause them to either divide into uniform segments or shatter into unpredictable splinters, depending ...

How tree diversity regulates invading forest pests

March 25, 2019

A national-scale study of U.S. forests found strong relationships between the diversity of native tree species and the number of nonnative pests that pose economic and ecological threats to the nation's forests.

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

kimbssss
not rated yet Dec 29, 2017
GOE was caused by photosynthetic bacteria, like cyanobacteria, not by eukaryotes, like algae or plants.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.