Humans, unlike monkeys, turn competitive situation into cooperative one

December 7, 2017 by Jennifer Rainey Marquez
Credit: Georgia State University

Rhesus macaques and capuchin monkeys can find a stable solution when playing a competitive game in which one opponent always does better than the other, but only humans can find a solution that benefits both competitors equally, turning a competitive situation into a cooperative one, according to a Georgia State University study.

The findings advance scientists' understanding of the evolutionary trajectory of decision-making.

The study authors examined social decision-making in three : , and humans. Participants were given two versions of a classic game of conflict known as "Hawk–Dove," in which two players compete over a shared resource. Opponents can choose to play one of two tokens: "Fight" or "Yield." The competitor who plays "Fight" will receive the larger reward, but if both competitors play "Fight" the reward is withheld. If both choose "Yield," they each receive a smaller reward.

The solution is to find what's known as a Nash equilibrium, in which neither opponent can do better by playing an alternate strategy. In this case, the most mutually beneficial strategy is the so-called "alternating" Nash, in which players alternate who plays "Fight" and who plays "Yield."

In the study, published in the Journal of Economic Behavior & Organization, the subjects were presented with two versions of the game. In one version, both players' choices were immediately visible. In the other version, the players' choices were hidden until they had both made a decision. Human subjects received no instruction on the game strategy, and no species received any pre-trial training or testing.

Both species of primates were able to find a single asymmetric Nash equilibrium, in which one repeatedly plays "Fight" while the other repeatedly plays "Yield." However, they could only do so when the opponents' choices were immediately visible.

"We were surprised that the monkeys were able to find a stable solution, and fairly rapidly," said lead study author Sarah Brosnan, professor of psychology at Georgia State. "But we were especially surprised by the capuchins, which we had predicted would not be able to find Nash equilibrium. In previous studies, those subjects could only solve a coordination task by matching their partner's play. 'Anti-matching,' or playing opposite tokens, is more cognitively challenging than matching, so the animals really outperformed our expectations."

Brosnan said findings from these kinds of studies can help scientists make better predictions about how primates will behave in more natural situations.

Of the study participants, humans were the most likely to regularly play a Nash equilibrium. They were also the only species to find alternating Nash equilibria, in which opponents take turns playing either "Fight" or "Yield" to equitably distribute the maximum award.

"This suggests that humans of the same social group are looking for ways to cooperate," said Brosnan. "The implication that humans are well-adapted to find a in a competition over resources may say something about the unique challenges faced during the evolution of our species."

Explore further: How chimps, monkeys and humans compare on a level playing field

Related Stories

Looking for the best strategy? Ask a chimp

June 5, 2014

If you're trying to outwit the competition, it might be better to have been born a chimpanzee, according to a study by researchers at Caltech, which found that chimps at the Kyoto University Primate Research Institute consistently ...

Recommended for you

Typhoid fever toxin has a sweet tooth

December 11, 2017

Although the insidious bacterium Salmonella typhi has been around for centuries, very little is actually known about its molecular mechanisms. A new study from researchers at the College of Veterinary Medicine addresses this ...

Researchers develop powerful new method for microbiome analysis

December 11, 2017

Scientists from the Icahn School of Medicine at Mount Sinai, Sema4, and collaborating institutions New York University and the University of Florida today published a report detailing their new, more accurate method for identifying ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.