Study shows ground-penetrating radar can detect fine roots in crops

December 15, 2017, Texas A&M University
Credit: Texas A&M University

A recent study led Texas A&M AgriLife Research has shown ground-penetrating radar, or GPR, may be effectively used in detecting the fine roots of plants, helping agricultural producers identify what crop varieties are best suited to their field conditions.

"To meet the world's growing demand for food, agricultural crop production needs to double by 2050," said Dr. Xuejun Dong, an AgriLife Research soil crop physiologist at the Texas A&M AgriLife Research and Extension Center in Uvalde. "It is widely accepted that breeding efforts focused on aboveground traits alone are not sufficient to achieve the necessary agricultural yield to meet this future global demand. We felt shifting the emphasis to analyzing the system would provide an additional means to help agricultural producers meet this important goal."

Dong said a major limiting factor for crop assessment has been the lack of efficient root phenotyping methods for use in the field.

"We knew that ground-penetrating radar had been a non-invasive technique widely used in coarse root detection, but the applicability of GPR in detecting the fine roots of agricultural was still unknown. The objective of this study was to assess the feasibility of utilizing GPR to detect fine roots under field conditions."

Dong said to his knowledge this was the first study showing the high potential for using GPR to detect fine roots in agricultural crops.

The study, titled "Ground-penetrating radar (GPR) detects fine roots of in the field," also involved additional researchers from the Uvalde center, Texas A&M AgriLife centers in Amarillo and Weslaco, the U.S. Department of Agriculture Forest Service and the Samuel Roberts Noble Foundation in Ardmore, Oklahoma

It was conducted at four Texas cities—Amarillo, Dilley, Uvalde and Weslaco—with different soil types and soil moisture conditions.

Shane Sieckenius, research assistant with AgriLife Research at the Uvalde center, uses GPR in a wheat field. Credit: Texas A&M AgriLife Research photo
"Positive fine-root development is necessary for plants to maximize their intake of water and nutrients," said Dr. Daniel Leskovar, Uvalde center director and one of study researchers. "Being able to use ground-penetrating radar to evaluate and assess the fine root structure of different crop varieties would give us another powerful weapon in our arsenal for plant selection and breeding."

The study provided a comparison of core-measured and GPR-estimated root parameters depicting the most significant relations for wheat cultivars, studied in Amarillo and Uvalde, and sugarcane cultivars, studied in Weslaco. Several cultivars of winter wheat and sugarcane were scanned with ground-penetrating radar at 1,600 megahertz. In each measurement transect, the GPR antenna was moved at a steady speed over a 3-meter distance parallel to plant rows and between the two middle rows in each of the plots.

Soil cores were collected immediately after scanning and the core samples containing roots were stored in a freezer until processing. The roots were then cleaned and scanned on a flatbed scanner where root diameter was analyzed. After scanning, roots were oven-dried until constant mass and root dry mass was recorded.

"To better compare the GPR signal against the measured root values from the soil cores, radar profiles were sectioned with the most signal concentrated on the upper soil layer for further analysis," Dong said. "We also looked at pixel intensity in comparison to the different GPR indices."

Dong said the results of the study showed significant relationships between root traits and GPR signals.

"Significant relationships were found and the accuracy of root detection was higher in wet clay soils than in dry sandy soils," he said. "We also found that average GPR pixel intensity without an intensity threshold may be better to reflect root information."

Most importantly, he said, the study showed both fine root diameter and biomass could be detected by ground-penetrating radar, depending on soil conditions.

"This means we may be able to use GPR to more quickly determine the suitability of various cultivars in different conditions so we can assess which ones might be the best to plant under those conditions to help ensure the most positive crop yield and quality."

Explore further: Study shows plant growth regulators can benefit onion establishment, production

Related Stories

Researchers study organic matter processes in rice fields

November 1, 2017

A soil scientist from RUDN University reports that plant root secretions affect microorganisms and biochemical processes in paddy soils such as rice fields. Rice field soils play a very important role in the agriculture of ...

Recommended for you

Nanoscale Lamb wave-driven motors in nonliquid environments

March 19, 2019

Light driven movement is challenging in nonliquid environments as micro-sized objects can experience strong dry adhesion to contact surfaces and resist movement. In a recent study, Jinsheng Lu and co-workers at the College ...

OSIRIS-REx reveals asteroid Bennu has big surprises

March 19, 2019

A NASA spacecraft that will return a sample of a near-Earth asteroid named Bennu to Earth in 2023 made the first-ever close-up observations of particle plumes erupting from an asteroid's surface. Bennu also revealed itself ...

The powerful meteor that no one saw (except satellites)

March 19, 2019

At precisely 11:48 am on December 18, 2018, a large space rock heading straight for Earth at a speed of 19 miles per second exploded into a vast ball of fire as it entered the atmosphere, 15.9 miles above the Bering Sea.

Revealing the rules behind virus scaffold construction

March 19, 2019

A team of researchers including Northwestern Engineering faculty has expanded the understanding of how virus shells self-assemble, an important step toward developing techniques that use viruses as vehicles to deliver targeted ...

Levitating objects with light

March 19, 2019

Researchers at Caltech have designed a way to levitate and propel objects using only light, by creating specific nanoscale patterning on the objects' surfaces.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.