Refining pesticides to kill pests, not bees

November 21, 2017 by Ke Dong, Michigan State University
Researchers at Michigan State University's entomology department have unlocked a key to maintain the insecticide's effectiveness in eliminating pests without killing beneficial bugs, such as bees. The study, featured in the current issue of Proceedings of the National Academy of Sciences, shows that molecular tweaks can make the difference. Credit: Bill Ravlin

Pyrethroid pesticides are effective. Sometimes too effective.

Researchers at Michigan State University's entomology department have unlocked a key to maintain the insecticide's effectiveness in eliminating pests without killing beneficial bugs, such as bees. The study, featured in the current issue of Proceedings of the National Academy of Sciences, shows that molecular tweaks can make the difference.

Pyrethroids target the voltage-gated channel, a protein found in nerve and muscle cells used for rapid electrical signaling. Pyrethroids basically work by binding to the voltage gate of the sodium channel and prevent it from closing. The nervous system becomes over-stimulated and the insect is killed. These pesticides, however, don't have the same effect on humans, or other mammals for that matter.

Ke Dong, MSU insect toxicologist and neurobiologist and co-author of the paper, honed in on a single protein that could afford bumble bees the same resistance as humans - tau-fluvalinate, a pyrethroid insecticide. Dong worked with Shaoying Wu, lead author from Henan Agricultural University (China), who conducted the research in Dong's lab as a visiting scholar.

"For the first time we are showing that unique structural features in bee interfere with the binding of tau-fluvalinate to bumble bee sodium channels," said Dong. "This opens the possibility of designing new chemicals that target sodium channels of pests but spare bees."

Sodium channels are large transmembrane proteins of more than 2,000 . Dong's lab spent many years unraveling this groundbreaking advance. The scientists initially started with sodium channels from other bugs, such as mosquitoes, fruit flies, cockroaches, mites and ticks, to find where pyrethroids bind on insect sodium channels to effectively kill them. They got some help from nature.

"By examining wild mosquitoes that have become resistant to pyrethroids, we were able to help narrow down the potential sites on which to focus," Dong said.

Specifically, in a previous study, Dong and the team identified mutations that made the channels more resistant to pyrethroids. Working with Boris Zhorov, a computer modeling expert from McMaster University in Canada, they identified two distinct pyrethroid binding sites on insect sodium channels. They also uncovered the molecular differences between mammals' and insects' differing reactions to pyrethroids.

For the current study, the team focused on a longstanding enigma that bumble bees and honey bees are highly sensitive to most pyrethroids, but they were resistant to tau-fluvalinate. Currently, tau-fluvalinate is widely used to control agricultural pests and also varroa mites, which are one of the biggest threats to bees worldwide.

Eventually, the team discovered that the is resistant to tau-fluvalinate but sensitive to other pyrethroids. Further mutational analysis and computer modeling revealed that specific amino acid residues in bumble bee sodium channels are responsible for the selective toxicity.

Future research will examine sodium channels from various pest and beneficial insects to explore the features of pyrethroid binding sites, which could lay the groundwork for designing new and selective pesticides. It also will shed light on how pests develop resistance to insecticides over time and how beneficial insects respond to them in the field.

Explore further: Scorpion venom -- bad for bugs, good for pesticides

More information: Shaoying Wu et al. Molecular basis of selective resistance of the bumblebee BiNav1 sodium channel to tau-fluvalinate, Proceedings of the National Academy of Sciences (2017). DOI: 10.1073/pnas.1711699114

Related Stories

Scorpion venom -- bad for bugs, good for pesticides

April 27, 2011

Fables have long cast scorpions as bad-natured killers of hapless turtles that naively agree to ferry them across rivers. Michigan State University scientists, however, see them in a different light.

New insights into sodium channel structure

April 4, 2017

Northwestern Medicine scientists have mapped the complete structure of a voltage-gated sodium channel, proteins in the membrane of cells that play an important role in many diseases. The findings were published in Nature ...

Recommended for you

A world of parasites

May 25, 2018

Alex Betts, Craig MacLean and Kayla King from the Department of Zoology, shed light on their recent research published in Science, which addressed the impact that parasite communities have on evolutionary change and diversity.

A better B1 building block

May 25, 2018

Humans aren't the only earth-bound organisms that need to take their vitamins. Thiamine – commonly known as vitamin B1 – is vital to the survival of most every living thing on earth. But the average bacterium or plant ...

Bumblebees confused by iridescent colors

May 25, 2018

Iridescence is a form of structural colour which uses regular repeating nanostructures to reflect light at slightly different angles, causing a colour-change effect.

Plant symbioses—fragile partnerships

May 25, 2018

All plants require an adequate supply of inorganic nutrients, such as fixed nitrogen (usually in the form of ammonia or nitrate), for growth. A special group of flowering plants thus depends on close symbiotic relationships ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.