Quest for new medicines could be helped by cell discovery

November 27, 2017, University of Edinburgh

Scientists have made a key discovery that could speed up the production of cells in the lab for studying diseases such as multiple sclerosis and Parkinson's disease.

Experts say it could also help to boost supplies of cells for use in drug discovery research and could eventually aid production of cells for use as therapies.

Researchers at the University of Edinburgh have pinpointed two molecules that boost reprogramming of cells - a process through which cells of one type can be converted to another.

The molecules - called SMAD2 and SMAD3 - can enhance the efficiency of converting into induced , which have the distinctive ability to become any type of cell found in the body.

The team at the University's Medical Research Council Centre for Regenerative Medicine were surprised to find the molecules can also boost direct conversions from one type of mature cell to another - including transforming skin cells into brain cells.

Usually, converting human to functional brain cells in a dish takes around 50 days. The team found that adding either of the two molecules into a dish with the cells cuts the time taken to just 25 days.

Scientists use cell reprogramming techniques to produce cells in the lab so that they can study diseases. Such cells are also used for and for screening new medicines for potential toxic effects.

The approach is particularly helpful for producing cells that cannot be obtained from patient samples, such as .

The study was published in the journal Cell Stem Cell.

Professor Keisuke Kaji, a Medical Research Council Senior Fellow at the University of Edinburgh, said: "We have shown it is possible to boost reprogramming of diverse cell types using a single molecule. We hope this will stimulate further research to find other molecules that could have a similar - or even better - effect."

Dr Rob Buckle, Chief Science Officer at the Medical Research Council said: "Regenerative medicine is one of the most promising fields in biomedicine and a priority for the MRC. Pluripotent stem cells offer great potential for developing new treatments for a wide range of currently untreatable diseases so the discovery of the role these two molecules can play in improving the way we can make these , and how they can enhance the direct conversion of one mature cell-type to another of quite different function, represents real progress for the field."

Explore further: Improving the neuron factory—new modulator of stem cell identity found

More information: Tyson Ruetz et al, Constitutively Active SMAD2/3 Are Broad-Scope Potentiators of Transcription-Factor-Mediated Cellular Reprogramming, Cell Stem Cell (2017). DOI: 10.1016/j.stem.2017.10.013

Related Stories

Scientists discover a new kind of stem cell

March 3, 2016

Scientists at Michigan State University have discovered a new kind of stem cell, one that could lead to advances in regenerative medicine as well as offer new ways to study birth defects and other reproductive problems.

Recommended for you

Scientist launches hunt for Loch Ness 'monster DNA'

June 17, 2018

Tales of a giant creature lurking beneath the murky waves of Loch Ness have been around for more than 1,500 years—and one academic hopes the marvels of modern science can finally unravel the mystery.

Research shows diet shift of beluga whales in Alaska inlet

June 16, 2018

Beluga whales in Alaska's Cook Inlet may have changed their diet over five decades from saltwater prey to fish and crustaceans influenced by freshwater, according to a study by University of Alaska Fairbanks researchers.

Flatworms found to win most battles with harvestmen

June 15, 2018

A trio of researchers with Universidade de São Paulo has documented evidence of flatworms and harvestmen engaging in battle in the forests of Brazil. In their paper published in the Journal of Zoology, M. S. Silva. R. H. ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.