Ions in the spotlight

November 2, 2017, Albert Ludwigs University of Freiburg
Lasers of various wavelengths are used to cool the ions to a thousandth of a Kelvin at the start of an experiment. Credit: Julian Schmidt

The results of a research group from the Institute of Physics at the University of Freiburg has been given a special place in Nature Photonics. An accompanying "News & Views" article in the print version of the science journal highlights the work of the team led by Alexander Lambrecht, Julian Schmidt, Dr. Leon Karpa and Prof. Dr. Tobias Schätz. In their article "Long lifetimes and effective isolation of ions in optical and electrostatic traps," the work group describes the method they used to prevent the previously unavoidable driven motion of trapped charged atoms.

The experiment begins by trapping individual Barium ions in a quadrupole ion trap, known as a Paul trap. A quadrupole ion trap can store charged particles for days using alternating electric fields. However this results in the ion constantly swirling on a microscopic scale and executing a forced driven motion. This often leads to undesirable side-effects. For example, in current experiments with , the ions heat up the bath of – which is actually far cooler – like an immersion heater, instead of being cooled. This causes the temperature to rise by a factor of 10,000. Although this is still barely a thousandth of a degree Celsius above absolute zero, it already leads to heat death for sensitive quantum effects.

This is where the method that the group has been developing for its objectives since 2010 comes in: optical trapping of charged . An extremely bright laser is used to trap the ion in its beam without compelling additional movement. A few years ago it was only possible to optically trap ions for a few milliseconds. Thanks to the work of the Freiburg physicists, it is now possible to trap charged atoms for similar timescales as neutral atoms in comparable optical – a lifetime of several seconds is several times longer than is required for experiments. In addition, the researchers have shown that they can also isolate the ions adequately from the remaining outside world. The team now hopes to use this method to achieve 10,000-times lower temperatures and observe ultracold chemical processes in which quantum effects will dominate the interaction of the particles.

Explore further: An original method of cooling ions could have new and interesting uses

More information: Alexander Lambrecht et al. Long lifetimes and effective isolation of ions in optical and electrostatic traps, Nature Photonics (2017). DOI: 10.1038/s41566-017-0030-2

Related Stories

New methods for ion cooling

November 26, 2012

Among the most important techniques developed in atomic physics over the past few years are methods that enable the storage and cooling of atoms and ions at temperatures just above absolute zero. Scientists from Bangalore ...

Scientists set traps for atoms with single-particle precision

November 3, 2016

Atoms, photons, and other quantum particles are often capricious and finicky by nature; very rarely at a standstill, they often collide with others of their kind. But if such particles can be individually corralled and controlled ...

Trapping single atoms in a uniform fashion

September 28, 2016

Single neutral atoms trapped individually in optical microtraps are incredibly useful tools for studying quantum physics, as the atoms then exist in complete isolation from the environment. Arrays of optical microtraps containing ...

Recommended for you

Scientists produce 3-D chemical maps of single bacteria

November 16, 2018

Scientists at the National Synchrotron Light Source II (NSLS-II)—a U.S. Department of Energy (DOE) Office of Science User Facility at DOE's Brookhaven National Laboratory—have used ultrabright x-rays to image single bacteria ...

Quantum science turns social

November 15, 2018

Researchers in a lab at Aarhus University have developed a versatile remote gaming interface that allowed external experts as well as hundreds of citizen scientists all over the world to optimize a quantum gas experiment ...

Bursting bubbles launch bacteria from water to air

November 15, 2018

Wherever there's water, there's bound to be bubbles floating at the surface. From standing puddles, lakes, and streams, to swimming pools, hot tubs, public fountains, and toilets, bubbles are ubiquitous, indoors and out.

Terahertz laser pulses amplify optical phonons in solids

November 15, 2018

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg/Germany presents evidence of the amplification of optical phonons ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.