Not so different after all: Human cells, hardy microbes share common ancestor

November 8, 2017 by Anne Manning
Top: Two views of eukaryotic chromatin structure.Bottom: Two views of archaeal chromatin structure. Research published in Science has unveiled structural similarities between archaeal and eukaryotic histone-based chromatin. Credit: Santangelo and Luger Labs

To Tom Santangelo, single-celled microorganisms called archaea are like ancient mariners, surviving among the most extreme conditions on Earth, including volcanic vents in the deep ocean.

The Colorado State University researcher studies how these hardy microbes – which constitute one of three surviving domains of life – express their genes, produce their energy, and thrive in hot, lightless environments.

It turns out, we're not so different – biochemically, anyway – from archaea after all.

Santangelo, associate professor in the Department of Biochemistry and Molecular Biology, was on a team that found striking parallels between how archaeal and more complex cells, including humans' and animals', package and store their . The breakthrough study, published in Science earlier this year, provided evidence that archaea and share a common mechanism to compact, organize and structure their genomes.

The study was led by Karolin Luger, now a structural biologist at the University of Colorado Boulder. Most of the results reported in Science were completed while Luger was a CSU faculty member, from 1999 to 2015.

DNA, histones, nucleosomes, chromatin

A little high school biology review: Eukaryotes are cells with a nucleus and membrane-bound organelles, and they include fungal, plant and animal – including human – cells. They're set apart from their less complex counterparts, prokaryotes, by the absence of a nucleus. While archaea and bacteria are both prokaryotes, they are only distantly related. Archaea are the likely progenitors of eukaryotes and share many of the same proteins that control gene expression.

One of life's most fundamental processes – the mechanics by which DNA bends, folds and crams itself into a cell nucleus – is common across all eukaryotes, from microscopic protists to plants to humans.

Packed inside the nucleus of every eukaryotic cell is several feet of genetic material that is compacted in a very specific way. Small sections of DNA are wrapped, like thread around a spool, roughly two times around eight small proteins called histones. This entire DNA-histone complex is called a nucleosome, and a string of compacted nucleosomes is called chromatin. In 1997, Luger and colleagues first reported the exact structure of eukaryotic nucleosomes via X-ray crystallography.

'Gnarly' crystallography

Science paper collaborator John Reeve had discovered in the 1990s that were not limited to eukaryotes, but were also found in nucleus-free archaea cells. Reeves and Luger began a collaboration to crystallize histone-based archaeal chromatin and compare that structure with eukaryotic chromatin.

After years of stops and starts and trouble growing reliable archaeal histone crystals – Luger called it a "gnarly crystallographic problem" – the scientists succeeded in resolving the structure of archaeal chromatin, revealing its structural similarity to eukaryotes.

'Biologically meaningful' structure

In the data, the archaeal DNA seemed to form long, curvy, repeating superhelices. The researchers weren't sure if the structure was real, or an artifact of the experiment. That's where Santagelo's team at CSU provided key expertise.

"My group took up the challenge of determining whether the structure resolved in the crystals represented a biologically meaningful structure," he said.

Santangelo's team made variants of the archaeal histones and tested how the cells fared, as they disrupted the DNA superhelix. They found that the more they destabilized the structure, the sicker the cells got. Their efforts underscored the merits of the structure Luger's group had determined.

Being part of a team that provided so fundamental an insight as the ancestry of our cells was among the most rewarding moments of Santangelo's career.

"The major impact of the paper, I think, is that the idea of compacting DNA into those structures is a very ancient idea – probably more than 1 billion years old," Santangelo said. "Histone proteins came on the scene, and once they got into and started packaging genomes, they largely made themselves indispensable to those cells that encoded them."

Santangelo will continue conducting studies into the , function and energy transactions of archaea – those ancient mariners that now definitively represent an ancestral prototype of human cellular activity.

Explore further: Origins of DNA folding suggested in archaea

More information: Francesca Mattiroli et al, Structure of histone-based chromatin in Archaea, Science (2017). DOI: 10.1126/science.aaj1849

Related Stories

Origins of DNA folding suggested in archaea

August 10, 2017

In the cells of palm trees, humans, and some single-celled microorganisms, DNA gets bent the same way. Now, by studying the 3-D structure of proteins bound to DNA in microbes called Archaea, University of Colorado Boulder ...

Key factor identified in gene silencing

August 30, 2017

A fertilized human egg develops into multiple tissues, organs and about 200 distinct cell types. Each cell type has the same genes, but they are expressed differently during development and in mature cells.

Life as we know it most likely arose via 'long, slow dance'

June 16, 2016

The first eukaryote is thought to have arisen when simpler archaea and bacteria joined forces. But in an Opinion paper published June 16 in Trends in Cell Biology, researchers propose that new genomic evidence derived from ...

Recommended for you

Mammal long thought extinct in Australia resurfaces

December 15, 2017

A crest-tailed mulgara, a small carnivorous marsupial known only from fossilised bone fragments and presumed extinct in NSW for more than century, has been discovered in Sturt National Park north-west of Tibooburra.

Finding a lethal parasite's vulnerabilities

December 15, 2017

An estimated 100 million people around the world are infected with Strongyloides stercoralis, a parasitic nematode, yet it's likely that many don't know it. The infection can persist for years, usually only causing mild symptoms. ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.