Researchers document transformation of graphite into hexagonal diamond

November 2, 2017, Washington State University
The DCS two-stage gas gun used for experiments is linked to the APS x-ray beam. Credit: Washington State University

A new study by Washington State University researchers answers longstanding questions about the formation of a rare type of diamond during major meteorite strikes.

Hexagonal diamond or lonsdaleite is harder than the type of diamond typically worn on an engagement ring and is thought to be naturally made when large, -bearing meteorites slam into Earth.

Scientists have puzzled over the exact pressure and other conditions needed to make hexagonal diamond since its discovery in an Arizona meteorite fragment half a century ago.

Now, a team of WSU researchers has for the first time observed and recorded the creation of hexagonal diamond in highly oriented pyrolytic graphite under shock , revealing crucial details about how it is formed. The discovery could help planetary scientists use the presence of hexagonal diamond at meteorite craters to estimate the severity of impacts.

The research was possible because of an unprecedented experimental development-the WSU-led Dynamic Compression Sector at Argonne National Laboratory's Advanced Photon Source. The DCS is a first-of-its-kind experimental facility that links different shock wave compression capabilities to synchrotron x-rays. Using its unique capabilities, the WSU team was able to take x-ray snap shots of the transformation of graphite to hexagonal diamond in real-time.

The results of the researchers' work are published in the journal Science Advances.

"The transformation to hexagonal diamond occurs at a significantly lower stress than previously believed," said WSU Regents Professor Yogendra Gupta, director of the Institute for Shock Physics and a co-author of the study. "This result has important implications regarding the estimates of thermodynamic conditions at the terrestrial sites of meteor impacts."

First author, Stefan Turneaure, prepares the target chamber for a shot. Credit: Washington State University
Making diamonds

WSU shock physicist Stefan Turneaure and a team of researchers found that the crystalline structure of a highly oriented form of graphite transforms to the uncommon hexagonal form of diamond at a pressure of 500,000 atmospheres, around four times lower than previous studies had indicated.

To obtain their results, the researchers shot a lithium fluoride impactor at 11,000 mph into a 2 mm thick graphite disk. They then used pulsed synchrotron x-rays to take snapshots every 150 billionths of a second while the shockwave from the impact compressed the graphite sample. Their work clearly showed the graphite sample transformed into the hexagonal form of diamond before being obliterated into dust.

"Most past research relied on microstructural examination of samples after they were shock compressed to infer what might have happened," Turneaure said. "Such late-time measurements do not tell the whole story of what happened to the material during shock compression."

Moving forward

Turneaure and Gupta said the next step in the research will be to investigate under what conditions pure hexagonal diamond can be recovered after compression.

"Diamond is a material that is very easy to get excited about and our work in this area is just beginning," Gupta said. "Moving forward, we plan to investigate the persistence of this form of diamond under lower pressure. Because it is thought to be 60 percent harder than the common cubic diamond, hexagonal diamond could have many potential uses in industry if it could be successfully recovered after ."

Explore further: Scientists solve puzzle of turning graphite into diamond

More information: Stefan J. Turneaure et al, Transformation of shock-compressed graphite to hexagonal diamond in nanoseconds, Science Advances (2017). DOI: 10.1126/sciadv.aao3561

Related Stories

Scientists solve puzzle of turning graphite into diamond

February 23, 2017

(Phys.org)—Researchers have finally answered a question that has eluded scientists for years: when exposed to moderately high pressures, why does graphite turn into hexagonal diamond (also called lonsdaleite) and not the ...

Asteroid impacts on Earth make structurally bizarre diamonds

November 21, 2014

(Phys.org) —Scientists have argued for half a century about the existence of a form of diamond called lonsdaleite, which is associated with impacts by meteorites and asteroids. A group of scientists based mostly at Arizona ...

Amorphous diamond synthesized

August 31, 2017

A team of Carnegie high-pressure physicists have created a form of carbon that's hard as diamond, but amorphous, meaning it lacks the large-scale structural repetition of a diamond's crystalline structure. Their findings ...

Recommended for you

Atomic parity violation research reaches new milestone

November 12, 2018

A reflection always reproduces objects as a complete mirror image, rather than just its individual parts or individual parts in a completely different orientation. It's all or nothing, the mirror can't reflect just a little. ...

Innovative experimental scheme can create mirror molecules

November 12, 2018

Exploring the mystery of molecular handedness in nature, scientists have proposed a new experimental scheme to create custom-made mirror molecules for analysis. The technique can make ordinary molecules spin so fast that ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

AllaBreve
not rated yet Nov 02, 2017
To any person who may know, does hexagonal diamond occur naturally on earth ? Also, an empassoined plea to all contributors to avoid saying "three times smaller" and the like - it is nonsense and sloppy, you cannot multiply something by an integer and make it smaller.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.