
 

Algorithm leverages Titan supercomputer to
create high-performing deep neural networks
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Inspired by the brain’s web of neurons, deep neural networks consist of
thousands or millions of simple computational units. Leveraging the GPU
computing power of the Cray XK7 Titan, ORNL researchers were able to auto-
generate custom neural networks for science problems in a matter of hours as
opposed to the months needed using conventional methods. Credit: Oak Ridge
National Laboratory
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Deep neural networks—a form of artificial intelligence—have
demonstrated mastery of tasks once thought uniquely human. Their
triumphs have ranged from identifying animals in images, to recognizing
human speech, to winning complex strategy games, among other
successes.

Now, researchers are eager to apply this computational
technique—commonly referred to as deep learning—to some of
science's most persistent mysteries. But because scientific data often
looks much different from the data used for animal photos and speech,
developing the right artificial neural network can feel like an impossible
guessing game for nonexperts. To expand the benefits of deep learning
for science, researchers need new tools to build high-performing neural
networks that don't require specialized knowledge.

Using the Titan supercomputer, a research team led by Robert Patton of
the US Department of Energy's(DOE's) Oak Ridge National Laboratory
(ORNL) has developed an evolutionary algorithm capable of generating
custom neural networks that match or exceed the performance of
handcrafted artificial intelligence systems. Better yet, by leveraging the
GPU computing power of the Cray XK7 Titan—the leadership-class
machine managed by the Oak Ridge Leadership Computing Facility, a
DOE Office of Science User Facility at ORNL—these auto-generated
networks can be produced quickly, in a matter of hours as opposed to the
months needed using conventional methods.

The research team's algorithm, called MENNDL (Multinode
Evolutionary Neural Networks for Deep Learning), is designed to
evaluate, evolve, and optimize neural networks for unique datasets.
Scaled across Titan's 18,688 GPUs, MENNDL can test and train
thousands of potential networks for a science problem simultaneously,
eliminating poor performers and averaging high performers until an
optimal network emerges. The process eliminates much of the time-
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intensive, trial-and-error tuning traditionally required of machine
learning experts.

"There's no clear set of instructions scientists can follow to tweak
networks to work for their problem," said research scientist Steven
Young, a member of ORNL's Nature Inspired Machine Learning team.
"With MENNDL, they no longer have to worry about designing a
network. Instead, the algorithm can quickly do that for them, while they
focus on their data and ensuring the problem is well-posed."

Pinning down parameters

Inspired by the brain's web of neurons, deep neural networks are a
relatively old concept in neuroscience and computing, first popularized
by two University of Chicago researchers in the 1940s. But because of
limits in computing power, it wasn't until recently that researchers had
success in training machines to independently interpret data.

Today's neural networks can consist of thousands or millions of simple
computational units—the "neurons"—arranged in stacked layers, like the
rows of figures spaced across a foosball table. During one common form
of training, a network is assigned a task (e.g., to find photos with cats)
and fed a set of labeled data (e.g., photos of cats and photos without
cats). As the network pushes the data through each successive layer, it
makes correlations between visual patterns and predefined labels,
assigning values to specific features (e.g., whiskers and paws). These
values contribute to the weights that define the network's model
parameters. During training, the weights are continually adjusted until
the final output matches the targeted goal. Once the network learns to
perform from training data, it can then be tested against unlabeled data.

Although many parameters of a neural network are determined during
the training process, initial model configurations must be set manually.
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These starting points, known as hyperparameters, include variables like
the order, type, and number of layers in a network.

Finding the optimal set of hyperparameters can be the key to efficiently
applying deep learning to an unusual dataset. "You have to
experimentally adjust these parameters because there's no book you can
look in and say, 'These are exactly what your hyperparameters should
be,'" Young said. "What we did is use this evolutionary algorithm on
Titan to find the best hyperparameters for varying types of datasets."

Unlocking that potential, however, required some creative software
engineering by Patton's team. MENNDL homes in on a neural network's
optimal hyperparameters by assigning a neural network to each Titan
node. The team designed MENNDL to use a deep learning framework
called Caffe to carry out the computation, relying on the parallel
computing Message Passing Interface standard to divide and distribute
data among nodes. As Titan works through individual networks, new
data is fed to the system's nodes asynchronously, meaning once a node
completes a task, it's quickly assigned a new task independent of the
other nodes' status. This ensures that the 27-petaflop Titan stays busy
combing through possible configurations.

"Designing the algorithm to really work at that scale was one of the
challenges," Young said. "To really leverage the machine, we set up
MENNDL to generate a queue of individual networks to send to the
nodes for evaluation as soon as computing power becomes available."

To demonstrate MENNDL's versatility, the team applied the algorithm
to several datasets, training networks to identify sub-cellular structures
for medical research, classify satellite images with clouds, and categorize
high-energy physics data. The results matched or exceeded the
performance of networks designed by experts.
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Networking neutrinos

One science domain in which MENNDL is already proving its value is
neutrino physics. Neutrinos, ghost-like particles that pass through your
body at a rate of trillions per second, could play a major role in
explaining the formation of the early universe and the nature of
matter—if only scientists knew more about them.

Large detectors at DOE's Fermi National Accelerator Laboratory
(Fermilab) use high-intensity beams to study elusive neutrino reactions
with ordinary matter. The devices capture a large sample of neutrino
interactions that can be transformed into basic images through a process
called "reconstruction." Like a slow-motion replay at a sporting event,
these reconstructions can help physicists better understand neutrino
behavior.

"They almost look like a picture of the interaction," said Gabriel Perdue,
an associate scientist at Fermilab.

Perdue leads an effort to integrate neural networks into the classification
and analysis of detector data. The work could improve the efficiency of
some measurements, help physicists understand how certain they can be
about their analyses, and lead to new avenues of inquiry.

Teaming up with Patton's team under a 2016 Director's Discretionary
application on Titan, Fermilab researchers produced a competitive
classification network in support of a neutrino scattering experiment
called MINERvA (Main Injector Experiment for v-A). The task, known
as vertex reconstruction, required a network to analyze images and
precisely identify the location where neutrinos interact with the
detector—a challenge for events that produce many particles.

In only 24 hours, MENNDL produced optimized networks that
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outperformed handcrafted networks—an achievement that would have
taken months for Fermilab researchers. To identify the high-performing 
network, MENNDL evaluated approximately 500,000 neural networks.
The training data consisted of 800,000 images of neutrino events,
steadily processed on 18,000 of Titan's nodes.

"You need something like MENNDL to explore this effectively infinite
space of possible networks, but you want to do it efficiently," Perdue
said. "What Titan does is bring the time to solution down to something
practical."

Having recently been awarded another allocation under the Advanced
Scientific Computing Research Leadership Computing Challenge
program, Perdue's team is building off its deep learning success by
applying MENDDL to additional high-energy physics datasets to
generate optimized algorithms. In addition to improved physics
measurements, the results could provide insight into how and why
machines learn.

"We're just getting started," Perdue said. "I think we'll learn really
interesting things about how deep learning works, and we'll also have
better networks to do our physics. The reason we're going through all
this work is because we're getting better performance, and there's real
potential to get more."

AI meets exascale

When Titan debuted 5 years ago, its GPU-accelerated architecture
boosted traditional modeling and simulation to new levels of detail.
Since then, GPUs, which excel at carrying out hundreds of calculations
simultaneously, have become the go-to processor for deep learning. That
fortuitous development made Titan a powerful tool for exploring
artificial intelligence at supercomputer scales.
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With the OLCF's next leadership-class system, Summit, set to come
online in 2018, deep learning researchers expect to take this blossoming
technology even further. Summit builds on the GPU revolution
pioneered by Titan and is expected to deliver more than five times the
performance of its predecessor. The IBM system will contain more than
27,000 of Nvidia's newest Volta GPUs in addition to more than 9,000
IBM Power9 CPUs. Furthermore, because deep learning requires less
mathematical precision than other types of scientific computing, Summit
could potentially deliver exascale-level performance for deep learning
problems—the equivalent of a billion billion calculations per second.

"That means we'll be able to evaluate larger networks much faster and
evolve many more generations of networks in less time," Young said.

In addition to preparing for new hardware, Patton's team continues to
develop MENNDL and explore other types of experimental techniques,
including neuromorphic computing, another biologically inspired
computing concept.

"One thing we're looking at going forward is evolving deep learning
networks from stacked layers to graphs of layers that can split and then
merge later," Young said. "These networks with branches excel at
analyzing things at multiple scales, such as a closeup photograph in
comparison to a wide-angle shot. When you have 20,000 GPUs
available, you can actually start to think about a problem like that."

  More information: Steven R. Young et al. Evolving Deep Networks
Using HPC, Proceedings of the Machine Learning on HPC Environments
- MLHPC'17 (2017). DOI: 10.1145/3146347.3146355 

Adam M. Terwilliger et al. Vertex reconstruction of neutrino
interactions using deep learning, 2017 International Joint Conference on
Neural Networks (IJCNN) (2017). DOI: 10.1109/IJCNN.2017.7966131
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