

System for performing 'tensor algebra' offers
100-fold speedups over previous software
packages

October 31 2017, by Larry Hardesty

A new MIT computer system speeds computations involving “sparse tensors,”
multidimensional data arrays that consist mostly of zeroes. Credit: Christine
Daniloff, MIT

1/6

We live in the age of big data, but most of that data is "sparse." Imagine,
for instance, a massive table that mapped all of Amazon's customers
against all of its products, with a "1" for each product a given customer
bought and a "0" otherwise. The table would be mostly zeroes.

With sparse data, analytic algorithms end up doing a lot of addition and
multiplication by zero, which is wasted computation. Programmers get
around this by writing custom code to avoid zero entries, but that code is
complex, and it generally applies only to a narrow range of problems.

At the Association for Computing Machinery's Conference on Systems,
Programming, Languages and Applications: Software for Humanity
(SPLASH), researchers from MIT, the French Alternative Energies and
Atomic Energy Commission, and Adobe Research recently presented a
new system that automatically produces code optimized for sparse data.

That code offers a 100-fold speedup over existing, non-optimized
software packages. And its performance is comparable to that of
meticulously hand-optimized code for specific sparse-data operations,
while requiring far less work on the programmer's part.

The system is called Taco, for tensor algebra compiler. In computer-
science parlance, a data structure like the Amazon table is called a
"matrix," and a tensor is just a higher-dimensional analogue of a matrix.
If that Amazon table also mapped customers and products against the
customers' product ratings on the Amazon site and the words used in
their product reviews, the result would be a four-dimensional tensor.

"Sparse representations have been there for more than 60 years," says
Saman Amarasinghe, an MIT professor of electrical engineering and
computer science (EECS) and senior author on the new paper. "But
nobody knew how to generate code for them automatically. People
figured out a few very specific operations—sparse matrix-vector

2/6

https://phys.org/tags/code/

multiply, sparse matrix-vector multiply plus a vector, sparse matrix-
matrix multiply, sparse matrix-matrix-matrix multiply. The biggest
contribution we make is the ability to generate code for any tensor-
algebra expression when the matrices are sparse."

Joining Amarasinghe on the paper are first author Fredrik Kjolstad, an
MIT graduate student in EECS; Stephen Chou, also a graduate student in
EECS; David Lugato of the French Alternative Energies and Atomic
Energy Commission; and Shoaib Kamil of Adobe Research.

Custom kernels

In recent years, the mathematical manipulation of tensors—tensor
algebra—has become crucial to not only big-data analysis but machine
learning, too. And it's been a staple of scientific research since Einstein's
time.

Traditionally, to handle tensor algebra, mathematics software has
decomposed tensor operations into their constituent parts. So, for
instance, if a computation required two tensors to be multiplied and then
added to a third, the software would run its standard tensor
multiplication routine on the first two tensors, store the result, and then
run its standard tensor addition routine.

In the age of big data, however, this approach is too time-consuming.
For efficient operation on massive data sets, Kjolstad explains, every
sequence of tensor operations requires its own "kernel," or
computational template.

"If you do it in one kernel, you can do it all at once, and you can make it
go faster, instead of having to put the output in memory and then read it
back in so that you can add it to something else," Kjolstad says. "You
can just do it in the same loop."

3/6

Computer science researchers have developed kernels for some of the
tensor operations most common in machine learning and big-data
analytics, such as those enumerated by Amarasinghe. But the number of
possible kernels is infinite: The kernel for adding together three tensors,
for instance, is different from the kernel for adding together four, and
the kernel for adding three three-dimensional tensors is different from
the kernel for adding three four-dimensional tensors.

Many tensor operations involve multiplying an entry from one tensor
with one from another. If either entry is zero, so is their product, and
programs for manipulating large, sparse matrices can waste a huge
amount of time adding and multiplying zeroes.

Hand-optimized code for sparse tensors identifies zero entries and
streamlines operations involving them—either carrying forward the
nonzero entries in additions or omitting multiplications entirely. This
makes tensor manipulations much faster, but it requires the programmer
to do a lot more work.

The code for multiplying two matrices—a simple type of tensor, with
only two dimensions, like a table—might, for instance, take 12 lines if
the matrix is full (meaning that none of the entries can be omitted). But
if the matrix is sparse, the same operation can require 100 lines of code
or more, to track omissions and elisions.

Enter Taco

Taco adds all that extra code automatically. The programmer simply
specifies the size of a tensor, whether it's full or sparse, and the location
of the file from which it should import its values. For any given
operation on two tensors, Taco builds a hierarchical map that indicates,
first, which paired entries from both tensors are nonzero and, then,
which entries from each tensor are paired with zeroes. All pairs of

4/6

zeroes it simply discards.

Taco also uses an efficient indexing scheme to store only the nonzero
values of sparse tensors. With zero entries included, a publicly released
tensor from Amazon, which maps customer ID numbers against
purchases and descriptive terms culled from reviews, takes up 107
exabytes of data, or roughly 10 times the estimated storage capacity of
all of Google's servers. But using the Taco compression scheme, it takes
up only 13 gigabytes—small enough to fit on a smartphone.

"Many research groups over the last two decades have attempted to solve
the compiler-optimization and code-generation problem for sparse-
matrix computations but made little progress," says Saday Sadayappan, a
professor of computer science and engineering at Ohio State University,
who was not involved in the research. "The recent developments from
Fred and Saman represent a fundamental breakthrough on this long-
standing open problem."

"Their compiler now enables application developers to specify very
complex sparse matrix or tensor computations in a very easy and
convenient high-level notation, from which the compiler automatically
generates very efficient code," he continues. "For several sparse
computations, the generated code from the compiler has been shown to
be comparable or better than painstakingly developed manual
implementations. This has the potential to be a real game-changer. It is
one of the most exciting advances in recent times in the area of compiler
optimization."

 More information: Fredrik Kjolstad et al. The tensor algebra
compiler, Proceedings of the ACM on Programming Languages (2017).
DOI: 10.1145/3133901

5/6

https://phys.org/tags/tensor/
http://dx.doi.org/10.1145/3133901

This story is republished courtesy of MIT News
(web.mit.edu/newsoffice/), a popular site that covers news about MIT
research, innovation and teaching.

Provided by Massachusetts Institute of Technology

Citation: System for performing 'tensor algebra' offers 100-fold speedups over previous software
packages (2017, October 31) retrieved 25 April 2024 from https://phys.org/news/2017-10-tensor-
algebra-fold-speedups-previous.html

This document is subject to copyright. Apart from any fair dealing for the purpose of private
study or research, no part may be reproduced without the written permission. The content is
provided for information purposes only.

Powered by TCPDF (www.tcpdf.org)

6/6

http://web.mit.edu/newsoffice/
https://phys.org/news/2017-10-tensor-algebra-fold-speedups-previous.html
https://phys.org/news/2017-10-tensor-algebra-fold-speedups-previous.html
http://www.tcpdf.org

