Remote sensing for cosmic dust and other celestial bodies

October 11, 2017, Springer

The solar system is full of various small bodies such as planetary moons, main belt asteroids, Jupiter Trojans, Centaurs, trans-Neptunian objects and comets. To study them, scientists typically analyse the radiation they reflect, which is referred to as polarimetry. Scientists not only focus on the intensity of the scattered radiation, but also on how photons oscillate in the plane perpendicular to their direction of propagation - that is, their polarisation. Combining these two aspects yields significantly better descriptions than data obtained from the intensity alone.

In a paper published in EPJ Plus, Stefano Bagnulo from Armagh Observatory and Planetarium in Northern Ireland, UK, and colleagues review the state-of-the-art in polarimetry for studying the small bodies in our solar system.

Combined with other observational techniques, such as thermal radiometry and visible photometry, polarimetry may be used as a remote sensing technique to measure asteroids' size, to reveal the composition and size variation of dust in comets or of aerosols in , to study the surface structure of asteroids, or even to detect extra-terrestrial biomarkers.

So how does work? The way light is polarised depends on the nature of the scattering surface, and the measured polarisation changes when the object is observed from different angles. Imagine that radiation hits an electron on a surface. That electron begins oscillating, and becomes more inclined to move in a direction parallel to the surface than to penetrate it. Therefore, the reflected light presents an excess of photons oscillating in the direction parallel to the , making the reflected light polarised. In this way, measuring polarisation can yield pertinent information on objects in the solar system. By combining it with other techniques, scientists can make important advances in the physical characterisation of these small bodies.

Explore further: Hubble discovers a unique type of object in the Solar System

More information: S. Bagnulo et al, Polarimetry of small bodies and satellites of our Solar System, The European Physical Journal Plus (2017). DOI: 10.1140/epjp/i2017-11690-6

Related Stories

Hubble discovers a unique type of object in the Solar System

September 20, 2017

With the help of the NASA/ESA Hubble Space Telescope, a German-led group of astronomers have observed the intriguing characteristics of an unusual type of object in the asteroid belt between Mars and Jupiter: two asteroids ...

Kepler has caught hundreds of asteroids

October 24, 2016

Previously, the Kepler space telescope looked straight out from the solar system in a direction almost perpendicular to the ecliptic and the plane of the planets. This way, it could observe the same spot all year long, as ...

Nanosat fleet proposed for voyage to 300 asteroids

September 19, 2017

A fleet of tiny spacecraft could visit over 300 asteroids in just over three years, according to a mission study led by the Finnish Meteorological Institute. The Asteroid Touring Nanosat Fleet concept comprises 50 spacecraft ...

NASA's Wise finds mysterious centaurs may be comets

July 25, 2013

The true identity of centaurs, the small celestial bodies orbiting the sun between Jupiter and Neptune, is one of the enduring mysteries of astrophysics. Are they asteroids or comets? A new study of observations from NASA's ...

Recommended for you

Exploring planetary plasma environments from your laptop

June 15, 2018

A new database of plasma simulations, combined with observational data and powerful visualisation tools, is providing planetary scientists with an unprecedented way to explore some of the Solar System's most interesting plasma ...

NASA encounters the perfect storm for science

June 14, 2018

One of the thickest dust storms ever observed on Mars has been spreading for the past week and a half. The storm has caused NASA's Opportunity rover to suspend science operations, but also offers a window for four other spacecraft ...

The most distant radio galaxy discovered

June 14, 2018

An international team of astronomers has detected a new high-redshift radio galaxy (HzRG). The newly identified HzRG, designated TGSS1530, was found at a redshift of 5.72, meaning that it is the most distant radio galaxy ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.