Using optical chaos to control the momentum of light

October 19, 2017 by Leah Burrows, Harvard John A. Paulson School of Engineering and Applied Sciences
(Left) Without the chaos, coupling photons to an optical mode is inefficient. (Right) With the chaos, the photons could be efficiently delivered to the optical mode. Credit: Yin Feng and Xuejun Huang

Integrated photonic circuits, which rely on light rather than electrons to move information, promise to revolutionize communications, sensing and data processing. But controlling and moving light poses serious challenges. One major hurdle is that light travels at different speeds and in different phases in different components of an integrated circuit. For light to couple between optical components, it needs to be moving at the same momentum.

Now, a team of researchers at the Harvard John A. Paulson School of Engineering and Applied Sciences, in collaboration with Peking University in Beijing, has demonstrated a new way to control the of broadband light in a widely-used optical component known as a whispering gallery microcavity (WGM).

The paper, whose co-authors also include researchers from Washington University in Saint Louis, the California Institute of Technology, and the University of Magdeburg, is published in Science.

"The broadband optical chaos in microcavity is creating a universal tool to access many optical states," said Linbo Shao, a graduate student in the lab of Marko Loncar, the Tiantsai Lin Professor of Electrical Engineering, at SEAS and co-first author of the paper. "Previously, researchers need multiple special optical elements to couple light in and out WGMs at different wavelengths, but by this work we can couple all color lights with a single optical coupler."

A WGM is a type of optical microresonator used in a wide variety of applications, from long-range transmission in optical fibers to quantum computing. WGMs are named for the whispering galleries of St. Paul's Cathedral in London, where an acoustic wave (a whisper) circulates inside a cavity (the dome) from a speaker on one side to a listener on the other. The similar phenomena occurs in the Echo Wall in the Temple of Heaven in China and in the whispering arch in Grand Central Station in New York City.

Optical whispering galleries work much the same way. Light waves trapped in a highly-confined, circular space—smaller than a strand of hair—orbit around the inside of the cavity. Like the whispering wall, the cavity traps and carries the wave.

However, it is difficult to couple the optical fields from waveguides to the optical fields in whispering galleries in photonic circuits because the waves are traveling at different speeds.

Think of a WGM as a highway roundabout and optical fields as UPS trucks. Now, imagine trying to transfer a package between two trucks while both are moving at different speeds. Impossible, right?

In order to solve for this difference of momentum—without breaking Newton's law of the conservation of momentum—the research team created a little chaos. By deforming the shape of the optical microresonator, the researchers were able to create and harness so-called chaotic channels, in which the angular momentum of is not conserved and can change over time. By alternating the shape of the resonator, the momentum can be tuned; the resonator can be designed to match momentum between waveguides and WGMs. Importantly, the coupling is broadband and occurs between optical states that would otherwise not couple.

The research provides new applications for microcavity optics and photonics in optical quantum processing, optical storage and more.

"The work illustrates a fundamentally different approach to probe this important class of microresonators while also revealing beautiful physics relating to the subject of optical chaos," said Kerry Vahala, the Ted and Ginger Jenkins Professor of Information Science and Technology and Professor of Applied Physics at Cal Tech, who was not involved in this research.

Next, the team will explore the physics of optical chaos in other optical platforms and materials, including photonic crystals and diamonds.

Explore further: Physicists observe spontaneous symmetry breaking in an optical microcavity

More information: Xuefeng Jiang et al. Chaos-assisted broadband momentum transformation in optical microresonators, Science (2017). DOI: 10.1126/science.aao0763

Related Stories

Optical spring detects single molecules

July 28, 2016

A team of engineering researchers from the University of Victoria (UVic) and the University of Rochester (UR) has developed a way to detect single molecules using a light-based technology inspired by the "whispering gallery" ...

Recommended for you

Unusual sound waves discovered in quantum liquids

July 20, 2018

Ordinary sound waves—small oscillations of density—can propagate through all fluids, causing the molecules in the fluid to compress at regular intervals. Now physicists have theoretically shown that in one-dimensional ...

A phonon laser operating at an exceptional point

July 20, 2018

The basic quanta of light (photon) and sound (phonon) are bosonic particles that largely obey similar rules and are in general very good analogs of one another. Physicists have explored this analogy in recent experimental ...

A physics treasure hidden in a wallpaper pattern

July 20, 2018

An international team of scientists has discovered a new, exotic form of insulating material with a metallic surface that could enable more efficient electronics or even quantum computing. The researchers developed a new ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

Hyperfuzzy
not rated yet Oct 19, 2017
Impossible! Control the velocity of the charge. The Poynting Vector carries the momentum vector of the charge center. Thus to obtain desired results is to us the field and an existing charges momentum.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.