Researchers discover switching function in molecular wire

October 27, 2017, Kiel University
Researchers discover switching function in molecular wire
The top view shows: just one atom wide - less than a nanometre - is the wire (green), which is mounted vertically on a conductive platform (red). It can be easily attached to a metal surface (dark) like a suction cup - an electrical contact is realized. Credit: Jasper-Tönnies

The increasing miniaturisation in electronics will result in components which consist of only a few molecules, or even just one molecule. Tiny wires are required to connect these to an electrical circuit at the nano level. An international research team from Kiel University (CAU) and the Donostia International Physics Center in San Sebastián, Spain, has developed a molecule integrating a wire with a diameter of only a single atom. The scientists discovered that the current can be regulated via this molecular wire. It works like a nano power switch, and makes the use of molecular wires in electronic components at the nano scale feasible. The research team's findings appeared in the scientific journal Physical Review Letters.

The produced by the scientists from Kiel and San Sebastián is just two atomic bonds long and one atom wide. "This is the simplest molecular wire imaginable, thinner and much shorter is not possible," explained the Kiel physicist Torben Jasper-Tönnies, first author of the publication. In order to measure the current flowing through the nano wire, both ends must be connected to a metal electrode - like with larger circuits. But there are no metal clips which are small enough to create electrical contacts at the . "Electrically contacting individual molecules in a nano circuit is a problem that has not yet been resolved satisfactorily, and is widely discussed in the research community," explained Jasper-Tönnies, who is writing his doctoral thesis in the working group of Professor Richard Berndt.

In order to enable an electrical contact, the scientists developed a new wire, consisting of only a single molecule. "The special thing about our wire is that we can install it in a vertical position on a metal surface. This means that one of the two required contacts is already effectively built-in to the wire," explained Jasper-Tönnies. To achieve this, the involved chemists used an approach from the Kiel Collaborative Research Centre (SFB) 677 "Function by Switching". In the interdisciplinary research network, molecular platforms are among the areas of interest. The wire is attached to such a platform. It exhibits a high conductance, and can be easily attached to a metal surface like a suction cup - an electrical contact is realized.

This is how the wire molecule becomes a nano switch: the closer the tip of the scanning tunnelling microscope (yellow) gets to the nano wire (blue), the more the wire bends - and the current flow changes. This is due to quantum mechanical forces acting between the tip and the wire. They change the geometry of the molecule, and thereby its properties. Credit: Jasper-Tönnies

For the second required contact, the research team used a scanning tunnelling microscope (STM). With a metal tip, it "feels" a sample, and creates an image of its surface on a scale down to a few nanometres. Individual thus become visible. In their experiments, the Kiel researchers used a particularly fine metal tip for the STM, at the end of which was only a single atom. In this way, they were able to create an electrical contact with the second end of the wire, close the circuit, and measure the current. "Through this very precise contact via just one atom, we obtained particularly good data. We can replicate these contacts, and the current values measured differ very little from wire to wire," said Jasper-Tönnies.

During their measurements, the researchers also found that quantum mechanical forces act between the tip of the STM and the nano wire. These can be used to bend the wire mechanically. If the wire is only slightly bent, the current is reduced. However, if there is a strong bend, it increases. "By bending the wire, we were able to switch the current on or off. Although our wire is so simple, it behaves in a very complex way - this surprised us," explained Jasper-Tönnies.

The scientists think that the unusual electrical conductance of the nano wire is caused by its molecular structure. This is supported by calculations performed by Dr. Aran Garcia-Lekue and Professor Thomas Frederiksen from San Sebastián. As a result of the quantum mechanical forces, the individual atoms of the wire form new chemical bonds with the atom at the tip of the STM probe. This changes the geometry of the molecule, and thereby its properties. "Small geometrical differences can actually have a huge effect. This is why it is important to be able to set the geometry of a molecule and measure it as accurately as possible - and we achieve this by the precise contact of the nano wire and via the STM images in atomic resolution," said Jasper-Tönnies.

Explore further: Dental brace wire found in woman's bowel after 10 years

More information: Torben Jasper-Tönnies et al. Conductance of a Freestanding Conjugated Molecular Wire, Physical Review Letters (2017). DOI: 10.1103/PhysRevLett.119.066801

Related Stories

Dental brace wire found in woman's bowel after 10 years

August 8, 2017

A dental brace wire was found in a woman's bowel after 10 years. It was only discovered after she was admitted to hospital following two days of worsening stomach pain, explain doctors in the online journal BMJ Case Reports.

A tiny wire with a memory to diagnose cancer

August 17, 2016

EPFL researchers have used a nanowire to detect prostate cancer with greater accuracy than ever before. Their device is ten times more sensitive than any other biosensor available.

Single polymer chains as molecular wires

February 27, 2009

The research team of Leonhard Grill at Freie Universität Berlin - in collaboration with the synthetic chemistry group of Stefan Hecht from Humboldt University of Berlin and the theoretical physics group of Christian ...

Recommended for you

Solution for next generation nanochips comes out of thin air

November 19, 2018

Researchers at RMIT University have engineered a new type of transistor, the building block for all electronics. Instead of sending electrical currents through silicon, these transistors send electrons through narrow air ...

Scientists create atomic scale, 2-D electronic kagome lattice

November 19, 2018

Scientists from the University of Wollongong (UOW), working with colleagues at China's Beihang University, Nankai University, and Institute of Physics at Chinese Academy of Sciences, have successfully created an atomic scale, ...

Graphene flickers at 400Hz in 2500ppi displays

November 16, 2018

With virtual reality (VR) sizzling in every electronic fair, there is a need for displays with higher resolution, frame rates and power efficiency. Now, a joint collaboration of researchers from SCALE Nanotech, Graphenea ...

Solving mazes with single-molecule DNA navigators

November 16, 2018

The field of intelligent nanorobotics is based on the great promise of molecular devices with information processing capabilities. In a new study that supports the trend of DNA-based information carriers, scientists have ...

A way to make batteries almost any shape desired

November 16, 2018

A team of researchers from Korea Advanced Institute of Science and Technology, Harvard University and Korea Research Institute of Chemical Technology has developed a way to make batteries in almost any shape that can be imagined. ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.