Fishing for new antibiotics

October 10, 2017 by Kim Krieger

Two potent antibacterials found in fish do their dirty work in unexpected ways, report UConn chemists and colleagues in a paper accepted by the FEBS Journal. The research could point the way to entirely new classes of antibiotics.

Fish suffer from bacterial infections just like humans do. It's an especially tough problem for farmed , which live in close quarters where sickness can spread quickly. Fish farmers know that adding copper sulfate to the water reduces bacterial disease, but they haven't understood why. Now, a team led by chemists from UConn has discovered that fish make antibacterial that bind to copper and use it as a weapon to slay .

Peptides are small molecules, made from the same stuff as proteins but much shorter. Biologists knew that these fish peptides, called piscidin-1 and piscidin-3, were antibacterial. But it took a chemist to figure out the copper connection.

"We were interested in these peptides because they are found in several different species of fish," including tilapia and striped bass, says UConn chemist Alfredo Angeles-Boza. "And we noticed the peptides have a copper-binding motif," meaning a chemical pattern known to grab onto copper in other biological systems.

So the team tested the peptides' dependence on copper: first they added the peptides to colonies of E. coli bacteria grown in the lab. The bacteria died within hours. Then they grew colonies of E. coli in a special, copper-limited environment. When they added the peptides to the copper-depleted bacteria, the peptides weren't nearly as effective at killing. This was clear proof that copper was necessary for the peptides to work.

Once they had proven the peptides were using copper, they tested each peptide separately to see its mode of action. Although the two peptides looked similar chemically, and in both cases they used copper, they had totally different modes of attack. Piscidin-1 slashed through the bacteria's outer cell membrane, while piscidin-3 scrambled the bacteria's DNA.

Angeles-Boza says he and collaborator Myriam Cotten from the College of William and Mary were surprised: "The two peptides are very similar in structure but behave in very different ways. It is advantageous for fish, because the two peptides target different microbes. Nature made a minute change, but it makes a big difference."

In addition to killing bacteria outright, piscidin-3 has a unique ability to target forms of bacteria impervious to traditional antibiotics. For example, certain types of bacteria make "persister cells" that shut down and hibernate when conditions get hostile. This protects it from most traditional antibiotics, which rely on disrupting a bacterial cell's metabolic machinery. But piscidin-3 can infiltrate the cell and destroy its DNA, even as the cell hibernates. Piscidin-3 can also slice through biofilms, sticky nets of bacteria that tend to form on catheters, medical implants, the lungs of cystic fibrosis sufferers, and in chronic ear infections, to name just a few common examples.

The researchers are now searching for more examples of . So far, Angeles-Boza has found more than 65 different peptides that bind to , in humans and other mammals as well as in fish. The more examples they find, the more clues pharmaceutical chemists will have to design new antibiotics along the same motif.

Explore further: Spider peptides battle superbugs and cancer

More information: M. Daben J. Libardo et al. Nuclease activity gives an edge to host-defense peptide piscidin 3 over piscidin 1, rendering it more effective against persisters and biofilms, The FEBS Journal (2017). DOI: 10.1111/febs.14263

Related Stories

Spider peptides battle superbugs and cancer

August 9, 2017

As antibiotic resistance rises and fears over superbugs grow, scientists are looking for new treatment options. One area of focus is antimicrobial peptides (AMPs), which could someday be an alternative to currently prescribed ...

Peptides vs. superbugs

October 18, 2016

Several peptides have an antibacterial effect - but they are broken down in the human body too quickly to exert this effect. Empa researchers have now succeeded in encasing peptides in a protective coat, which could prolong ...

Computers learn to recognize molecules that can enter cells

November 15, 2016

A team of researchers from UCLA and the University of Illinois at Urbana-Champaign originally set out to discover and design antimicrobial peptides—short chains of amino acids that can kill bacteria by punching holes in ...

Recommended for you

Bioluminescent worm found to have iron superpowers

December 14, 2017

Researchers at Scripps Institution of Oceanography at the University of California San Diego have made a discovery with potential human health impacts in a parchment tubeworm, the marine invertebrate Chaetopterus sp., that ...

Scientists develop new, rapid pipeline for antimicrobials

December 14, 2017

With hospitals more often reaching for antibiotics of last resort to fight infections and recent Ebola and Zika outbreaks crossing borders like never before, the worldwide scientific community has been challenged with developing ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.