Cobalt and tungsten—the key to cheaper, cleaner hydrogen

October 31, 2017, Institute of Chemical Research of Catalonia
The new catalyst 'splits' water molecules to obtain hydrogen and oxygen with very low voltages. Credit: ICIQ

Electrolysis, splitting water molecules with electricity, is the cleanest way to obtain hydrogen, a clean and renewable fuel. Now, researchers at ICIQ and URV, led by Prof. José Ramón Galán-Mascarós, have designed a new catalyst that reduces the cost of electrolytic hydrogen production. Catalysts reduce the amount of electricity needed to break the chemical bonds, speed up the reaction and minimise energy waste.

"Normally, hydrogen is obtained from using a cheap process called steam reforming. But this is not clean hydrogen—this process uses natural gas and produces carbon dioxide and other contaminants," says Galán-Mascarós. "Breaking the water molecule is cleaner, but it's not easy. We need to develop cheap, efficient catalysts that allow us to obtain at a competitive price," he says. To date, the best catalysts are based on iridium oxides, but iridium is a very expensive and scarce precious metal.

Chemists at ICIQ and URV discovered a compound made of cobalt and called a polyoxometalate that can catalyse better than iridium. "Polyoxometalates are nanometric molecular oxides that combine the best of two worlds: the activity of oxides and the versatility of molecules," explains Marta Blasco-Ahicart, postdoctoral researcher at ICIQ and first author of the Nature Chemistry paper. "Our polyoxometalates are way cheaper than iridium and allow us to work in acidic media, the optimal media to generate oxygen, normally a drawback for catalysts, which are usually consumed by the acid," says Blasco-Ahicart.

Joaquín Soriano, co-author of the paper and currently a at Trinity College in Dublin, says, "Our catalysts work especially well when we work with low voltages. That may seem to be a drawback, but is actually an advantage. It saves electricity and will soon allow us to obtain the energy required for water splitting from renewable sources like solar panels."

The researchers present an additional discovery. When the catalysts are supported in a partially hydrophobic material, the efficiency of the process improves. This generates a "waterproof" reactor in which electrolysis advances quicker, and also enhances the lifetime of catalysts. The new methodology not only improves the performance of the new cobalt-tungsten polyoxometalates, but also a lot of other catalytic systems. Currently, researchers are investigating new ways of taking advantage of this finding, developing new hydrophobic scaffolds to further boost the efficiency of splitting, a fundamental step toward the evolution of artificial photosynthesis.

Explore further: Researchers report new, more efficient catalyst for water splitting

More information: Marta Blasco-Ahicart et al, Polyoxometalate electrocatalysts based on earth-abundant metals for efficient water oxidation in acidic media, Nature Chemistry (2017). DOI: 10.1038/nchem.2874

Related Stories

Improving the cost and efficiency of renewable energy storage

July 17, 2014

A major challenge in renewable energy is storage. A common approach is a reaction that splits water into oxygen and hydrogen, and uses the hydrogen as a fuel to store energy. The efficiency of 'water splitting' depends heavily ...

Recommended for you

The environmental cost of contact lenses

August 19, 2018

Many people rely on contact lenses to improve their vision. But these sight-correcting devices don't last forever—some are intended for a single day's use—and they are eventually disposed of in various ways. Now, scientists ...

When sulfur disappears without trace

August 17, 2018

Many natural products and drugs feature a so-called dicarbonyl motif— in certain cases, however, their preparation poses a challenge to organic chemists. In their most recent work, Nuno Maulide and his coworkers from the ...

Microfluidic chip for analysis of single cells

August 17, 2018

A few little cells that are different from the rest can have a big effect. For example, individual cancer cells may be resistant to a specific chemotherapy—causing a relapse in a patient who would otherwise be cured. In ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.