

Study finds auto-fix tool gets more
programmers to upgrade code

October 16 2017, by Matt Shipman

Credit: Tim Regan. Shared under a Creative Commons license.

Failure to make necessary upgrades to software code can have dire
consequences, such as the major data breach at Equifax. A recent study
finds that auto-fix tools are effective ways to get programmers to make
the relevant upgrades - if programmers opt to use them.

"Most software programs rely, in part, on code in external 'libraries' to

1/4

perform some of their functions," says Chris Parnin, an assistant
professor of computer science at North Carolina State University and
senior author of a paper on the work. "If those external libraries are
modified to address flaws, programmers need to update their internal
code to account for the changes. This is called 'upgrading an out-of-date
dependency.' However, for various reasons, many programmers
procrastinate, putting off the needed upgrades.

"This is what happened at Equifax," Parnin says. "An external library
they relied on had made public that it contained a security flaw. And
while the external library was patched, Equifax never got around to
updating its internal code. So months after the problem was identified,
Equifax was still vulnerable and got hacked.

"Our goal with this project was to assess tools designed to get more
programmers to upgrade their out-of-date dependencies. Could they help
prevent another Equifax?"

For this study, the researchers looked at thousands of open-source
projects on GitHub, an online programming community that fosters
collaboration on open-source software projects. Specifically, the
researchers looked at different means projects used to incentivize or
facilitate upgrades and whether those incentives made any difference.

One group consisted of 2,578 projects that utilized automated pull
requests, which notified project owners of needed upgrades to out-of-
date dependencies, proposed potential code changes, and ran a small
battery of tests to determine if the replacement code was viable. These
project owners were still required to approve the changes or modify
updated code if it failed initial viability tests.

A second group consisted of 1,273 projects that did not utilize incentives
to upgrade out-of-date dependencies.

2/4

https://phys.org/tags/project/
https://phys.org/tags/code/
https://phys.org/tags/upgrade/

The researchers found that projects with automated pull requests made
60 percent more of the necessary upgrades than projects that didn't use
incentives.

"We also found that the majority of automated pull request projects
were using the most up-to-date versions of dependent software, whereas
the unincentivized projects were all over the map," Parnin says. "The
take-home message here is that we have automated tools that can help
programmers keep up with upgrades. These tools can't replace good
programmers, but they can make a significant difference. However, it's
still up to programmers to put these tools in place and make use of
them."

The paper, "Can Automated Pull Requests Encourage Software
Developers to Upgrade Out-of-Date Dependencies?", will be presented
at the IEEE/ACM International Conference on Automated Software
Engineering, Oct. 30-Nov. 3 at the University of Illinois at Urbana-
Champaign, Ill.

 More information: "Can Automated Pull Requests Encourage
Software Developers to Upgrade Out-of-Date Dependencies?"
Presented: IEEE/ACM International Conference on Automated Software
Engineering, Oct. 30-Nov. 3 at the University of Illinois at Urbana-
Champaign, Ill. chrisparnin.me/pdf/VersionBot17.pdf

Provided by North Carolina State University

Citation: Study finds auto-fix tool gets more programmers to upgrade code (2017, October 16)
retrieved 11 May 2024 from https://phys.org/news/2017-10-auto-fix-tool-programmers-
code.html

3/4

https://phys.org/tags/software/
http://chrisparnin.me/pdf/VersionBot17.pdf
https://phys.org/news/2017-10-auto-fix-tool-programmers-code.html
https://phys.org/news/2017-10-auto-fix-tool-programmers-code.html

This document is subject to copyright. Apart from any fair dealing for the purpose of private
study or research, no part may be reproduced without the written permission. The content is
provided for information purposes only.

Powered by TCPDF (www.tcpdf.org)

4/4

http://www.tcpdf.org

