New antibiotic resistance genes found

October 16, 2017, Chalmers University of Technology

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have found several previously unknown genes that make bacteria resistant to last-resort antibiotics. The genes were found by searching large volumes of bacterial DNA and the results are published in the scientific journal Microbiome.

The increasing number of infections caused by is a rapidly growing global problem. Disease-causing bacteria become resistant through mutations of their own DNA or by acquiring from other, often harmless, bacteria.

By analysing large volumes of DNA data, the researchers found 76 new types of resistance genes. Several of these genes can provide bacteria with the ability to degrade carbapenems, our most powerful class of used to treat multi-resistant bacteria.

"Our study shows that there are lots of unknown resistance genes. Knowledge about these genes makes it possible to more effectively find and hopefully tackle new forms of ", says Erik Kristiansson, Professor in biostatistics at Chalmers University of Technology and principal investigator of the study.

"The more we know about how bacteria can defend themselves against antibiotics, the better are our odds for developing effective, new drugs", explains co-author Joakim Larsson, Professor in environmental pharmacology and Director of the Centre for Antibiotic Resistance Research at the University of Gothenburg.

The researchers identified the novel genes by analysing DNA sequences from collected from humans and various environments from all over the world.

"Resistance genes are often very rare, and a lot of DNA data needs to be examined before a new gene can be found", Kristiansson says.

Identifying a resistance gene is also challenging if it has not previously been encountered. The research group solved this by developing new computational methods to find patterns in DNA that are associated with antibiotic resistance. By testing the genes they identified in the laboratory, they could then prove that their predictions were correct.

"Our methods are very efficient and can search for the specific patterns of novel resistance genes in large volumes of DNA sequence data," says Fanny Berglund, a PhD student in the research group.

The next step for the research groups is to search for genes that provide resistance to other forms of antibiotics.

"The novel genes we discovered are only the tip of the iceberg. There are still many unidentified antibiotic resistance genes that could become major global health problems in the future," Kristiansson says.

Explore further: Fish food for marine farms harbor antibiotic resistance genes

More information: Fanny Berglund et al, Identification of 76 novel B1 metallo-β-lactamases through large-scale screening of genomic and metagenomic data, Microbiome (2017). DOI: 10.1186/s40168-017-0353-8

Related Stories

Fish food for marine farms harbor antibiotic resistance genes

August 30, 2017

From isolated caves to ancient permafrost, antibiotic-resistant bacteria and genes for resistance have been showing up in unexpected places. As scientists puzzle over how genes for antibiotic resistance arise in various environments ...

Bacteria can spread antibiotic resistance through soil

October 6, 2017

When most people think about bacterial antibiotic resistance, they think about it occurring in bacteria found in people or animals. But the environment surrounding us is a huge bacterial reservoir, and antibiotic resistance ...

Worrying traces of resistant bacteria in air

November 18, 2016

Polluted city air has now been identified as a possible means of transmission for resistant bacteria. Researchers in Gothenburg have shown that air samples from Beijing contain DNA from genes that make bacteria resistant ...

Bacteria in estuaries have genes for antibiotic resistance

January 31, 2017

An international group of researchers, including Professor Michael Gillings from Macquarie University, have reported that pollution with antibiotics and resistance genes is causing potentially dangerous changes to local bacteria ...

Recommended for you

How quinoa plants shed excess salt and thrive in saline soils

September 21, 2018

Barely heard of a couple of years ago, quinoa today is common on European supermarket shelves. The hardy plant thrives even in saline soils. Researchers from the University of Würzburg have now determined how the plant gets ...

Basking sharks can jump as high and as fast as great whites

September 20, 2018

A collaborative team of marine biologists has discovered that basking sharks, hundreds of which are found off the shores of Ireland, Cornwall, the Isle of Man and Scotland, can jump as fast and as high out of the water as ...

Decoding the structure of an RNA-based CRISPR system

September 20, 2018

Over the past several years, CRISPR-Cas9 has moved beyond the lab bench and into the public zeitgeist. This gene-editing tool CRISPR-Cas9 holds promise for correcting defects inside individual cells and potentially healing ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.