Computational tool recognizes filamentary sections of neurons and blood vessels

September 8, 2017
Computational tool recognizes filamentary sections of neurons and blood vessels
Retinal and neuronal segmentation images (right column) can be produced from empirical two-dimensional datasets (left column) thanks to a new computational approach. Credit: IEEE. Reprinted, with permission, from Ref 1.

A computational tool is now available for faster and more reliable screening and diagnosis of serious vascular and neurological conditions, including glaucoma, diabetic retinopathy, and Alzheimer's disease, in their early stages. Developed by A*STAR researchers, the software automatically segments filamentary structures, such as retinal blood vessels and neurons, in various biomedical images.

Clinicians and biologists often need to evaluate the morphology of filaments in to determine the presence and severity of vascular and neurological diseases. Filaments however can present a problem: as well as crossing and overlapping, they show variable diameters and degrees of twisting. This makes filamentary sections difficult to distinguish from backgrounds and, consequently, can skew visual assessments.

Several computer programs have been created to automate the segmentation process. These time-saving programs reduce human error, but their performance is typically optimized for specific tasks, which limits their use.

To widen the scope of these programs, Li Cheng and colleagues from the A*STAR Bioinformatics Institute, in collaboration with the Beijing Institute of Technology, have developed an that tackles segmentation as a general problem. "We have come up with a data-driven approach based on learning structured and contextual features," says Cheng.

The researchers designed a two-step algorithm that sequentially extracts structured and contextual information from experimental data sets. During structured feature learning, the program captures informative image patches consisting of unique foreground textures that collectively help the machine segment them from backgrounds. This first step produces features that serve as input for the subsequent learning stage.

Next, contextual characteristics among patches are encoded into the algorithm using pre-existing machine learning tools, called boosted tree classifiers, to acquire more of the global information.

"We were very happy to find out that our algorithm can work across different tasks and performs well in general," says Cheng. Compared to existing state-of-the-art methods, the algorithm delivered the best and almost best results over many different datasets (see image). Because of their specificity, most current methods typically work well for some tasks but not so well for others. "This is not the case for our algorithm," adds Cheng.

According to Li Cheng, the represents a stepping stone in his team's long-term efforts to cure eye-related problems and decipher the structure and inner working of neuronal diagrams. His team is developing a series of tools to reconstruct, segment, and separate these elementary objects in imaging data. "We expect these tools to provide a solid platform for clinicians and biologists," he adds.

Explore further: Study examines use of deep machine learning for detection of diabetic retinopathy

More information: Lin Gu et al. Segment 2D and 3D Filaments by Learning Structured and Contextual Features, IEEE Transactions on Medical Imaging (2016). DOI: 10.1109/TMI.2016.2623357

Related Stories

Tracing paths through a bottleneck

December 17, 2015

Automatic tracing of filamentary structures in medical images could improve drug screening and clinical diagnosis, and might also be useful for image analysis in other fields. Software to perform this complex task has been ...

Machine learning tackles quantum error correction

August 15, 2017

(Phys.org)—Physicists have applied the ability of machine learning algorithms to learn from experience to one of the biggest challenges currently facing quantum computing: quantum error correction, which is used to design ...

Recommended for you

Volumetric 3-D printing builds on need for speed

December 11, 2017

While additive manufacturing (AM), commonly known as 3-D printing, is enabling engineers and scientists to build parts in configurations and designs never before possible, the impact of the technology has been limited by ...

Tech titans ramp up tools to win over children

December 10, 2017

From smartphone messaging tailored for tikes to computers for classrooms, technology titans are weaving their way into childhoods to form lifelong bonds, raising hackles of advocacy groups.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.