A beautiful wing design solution inspired by owl feathers

September 27, 2017, Lehigh University
The flight feathers of many owl species comprise a porous wing planform and create a poroelastic trailing-edge fringe. Credit: Christa Neu, Lehigh University Communications

Many species of owl are able to hunt without being heard by their prey by suppressing the noise of their wings at sound frequencies above 1.6 kilohertz (kHz)—including the range at which human hearing is most sensitive.

Owl (the quality that allows air to pass resistively through the wings) helps in suppressing . Numerous aero-acoustic studies have examined the effect of wing porosity, inspired by the quiet plumage features of owls. However, much less is known about how wing porosity affects the aerodynamics of these wings, which likely competes with the acoustic benefits of porosity.

Now, researchers at Lehigh University have formulated and solved for exactly the aerodynamic loads on an airfoil, or 2-D wing-like structure. Their mathematical formula uses arbitrary realistic porosity distributions, which may be used in conjunction with an aero-acoustic theory, to determine the aerodynamic/aero-acoustic tradeoff of porous wing designs. The work has been described in a paper to be published in Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences called "The steady aerodynamics of aerofoils with porosity gradients."

The work could ultimately be used to improve man-made aerodynamic design of and specialized aircraft or autonomous drones.

"Exploratory experimental work by other researchers has measured the noise and aerodynamics of airfoils constructed from various porous materials over a range of flow speeds," said Justin W. Jaworski , assistant professor of mechanical engineering and mechanics and co-author of the paper. "Our work generalizes the existing theory to yield results for arbitrary porosity distributions along the airfoil and produces a porosity parameter that collapses all of the experimental data onto a single curve."

He adds: "Our general result—a single, explicit expression that solves the central mathematical problem without approximation—has the potential to be integrated into the aerodynamic/aero-acoustic design of the wings and blades of small air vehicles, wind turbines, or drones seeking to minimize their noise footprint through passive means."

According to Jaworski, the team's mathematical analysis was built upon classical aerodynamic theory. Interestingly, the key information to obtain an exact result with general porosity distributions came from an old Russian text.

"Perhaps most surprising was the discovery that the mathematical problem could be formulated very generally and solved in closed form without resorting to unnecessary approximations," said Rozhin Hajian, co-author of the paper and a mechanical engineering PhD student at Lehigh.

Using their formula, the results for the pressure distribution on a wing from any given description of the porosity and curvature of a wing section can be determined explicitly from a single equation—a tool that could be of major interest to designers seeking to minimize noise while maximizing aerodynamic properties.

"The fact that our result is explicit and in closed form for arbitrary porosity distributions makes it easy to implement in analyses of aerodynamics vs aero-acoustics to anticipate whether or not a particular porosity design will be effective for a given application," said Jaworski.

Explore further: Owls' wings could hold the key to beating wind turbine noise

More information: The steady aerodynamics of aerofoils with porosity gradients, Proceedings of the Royal Society A (2017). Published 26 September 2017. DOI: 10.1098/rspa.2017.0266 , http://rspa.royalsocietypublishing.org/content/473/2205/20170266

Related Stories

The secrets of owls' near noiseless wings

November 24, 2013

Many owl species have developed specialized plumage to effectively eliminate the aerodynamic noise from their wings – allowing them to hunt and capture their prey in silence.

Wing shape helps swifts glide through storms

August 23, 2017

They are among nature's best fliers, spending most of their time in flight … now scientists have shed new light on how swifts can glide with ease, whatever the weather. A new study suggests that the aerodynamics of swifts' ...

Recommended for you

Solving the mystery of an unusual medieval text

July 20, 2018

When historian Rowan Dorin first stepped onto the Stanford campus in early 2017, he made it a habit to visit Green Library every week to dig through its collection of medieval documents and objects.


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.