Variable sunshine— researchers explain why our Sun's brightness fluctuates

August 22, 2017, Max Planck Society
The flows of hot plasma within the Sun create a characteristic pattern on its surface: the granulation. Bright and darker regions within this pattern change quickly. The granulation is mainly responsible for the Sun’s brightness variations that occur within less than five hours. This image of the granulation was taken in 2009 by the instrument IMaX on board the balloon-borne solar observatory Sunrise. Credit: MPS

The Sun shines from the heavens, seemingly calm and unvarying. In fact, it doesn't always shine with uniform brightness, but shows dimmings and brightenings. Two phenomena alone are responsible for these fluctuations: the magnetic fields on the visible surface and gigantic plasma currents, bubbling up from the star's interior. A team headed by the Max Planck Institute for Solar System Research in Göttingen reports this result in today's issue of Nature Astronomy. For the first time, the scientists have managed to reconstruct fluctuations in brightness on all time scales observed to date – from minutes up to decades. These new insights are not only important for climate research, but can also be applied to distant stars. And they may simplify the future search for exoplanets.

When an exoplanet transits in front of its parent star, the star darkens briefly. Even from a distance of many light-years, space telescopes register these changes – and thus detect the exoplanets. In theory. In practice, it's more complicated, as the brightness of many fluctuates, similar to that of the Sun.

These fluctuations can overlay the signals of passing exoplanets. "However, if we are aware of the details of the star's intrinsic brightness fluctuations, exoplanets can be detected with great precision," says Alexander Shapiro of the Max Planck Institute for Solar System Research.

Shapiro and his colleagues have taken a first step in this direction with their current paper – with a detailed look at a special star: our Sun. Since the beginning of the space age, numerous spacecraft have delivered detailed data collected unaffected by the disturbances caused by the Earth's atmosphere.

These data seriously challenge any model describing fluctuations in stellar brightness: can the measured fluctuations be reconstructed using a model? And is it possible to link the fluctuations to the physical properties of the star?

The Sun’s magnetic fields are responsible for our star’s long-term brightness variations. At its surface, they become noticeable in the form of dark regions, so-called sunspots. Credit: NASA/SDO

One particular difficulty: the brightness of our Sun varies on very different time scales. Some fluctuations have cycles of only a few minutes; others, which have an impact on Earth's long-term climate, can only be recorded by researchers over decades. A unified theory encompassing all of these time scales has so far been lacking.

The new study's tour de force lies exactly in this point. It proves that only two phenomena determine how bright our star shines. On the one hand are the hot plasma currents rising from the interior of the Sun, cooling and sinking again into its depths. The hot, ascending material is brighter than the plasma that has already cooled on the surface.

In this way, the currents generate a characteristic, rapidly changing pattern of light and dark areas, known as granulation. Typical structures within this granulation are several hundred kilometres in size. "Granulation primarily causes rapid brightness fluctuations, with time-scales of less than five hours," says Max Planck researcher and co-author Natalie Krivova.

On the other hand, the Sun's variable magnetic fields play a decisive role. During periods of high activity, they can be recognized on the visible surface of our star by way of dark regions (sunspots) and especially bright areas (faculae). Compared to granulation, both structures are very large; some sunspots can even be discerned with the naked eye from Earth. In addition, variations in their number and form are considerably slower. Changes in the Sun's therefore lead to brightness fluctuations across time scales of more than five hours.

For their analyses, the researchers employed data obtained from instruments on the SOHO (Solar and Heliospheric Observatory) and SDO (Solar Dynamics Observatory) space probes, which have been recording the brightness patterns and the magnetic fields on the surface of the Sun for years. Using these records, some of which cover a 19-year period of solar development, they were able to analyze brightness fluctuations and in turn compare them with measured data obtained from PICARD and SOHO (obtained by another instrument than recorded the magnetic field).

All previously measured brightness fluctuations – both rapid and very long term – can be reproduced in this way. "The results of our study show us that we have identified the governing parameters in our model," concludes Sami K. Solanki, Director at the Max Planck Institute for Solar System Research and second author of the study. "This will now allow us, finally, to model the brightness fluctuations of other stars."

Explore further: Distant star is roundest object ever observed in nature

More information: A. I. Shapiro et al. The nature of solar brightness variations, Nature Astronomy (2017). DOI: 10.1038/s41550-017-0217-y

Related Stories

Distant star is roundest object ever observed in nature

November 16, 2016

Stars are not perfect spheres. While they rotate, they become flat due to the centrifugal force. A team of researchers around Laurent Gizon from the Max Planck Institute for Solar System Research and the University of Göttingen ...

Solar-like oscillations in other stars

December 12, 2016

Our sun vibrates due to pressure waves generated by turbulence in its upper layers (the layers dominated by convective gas motions). Helioseismology is the name given to the study of these oscillations, which can shed light ...

Image: Light from an ultra-cool neighbor

March 14, 2017

This animation shows the amount of light detected by each pixel in a small section of the camera onboard NASA's Kepler space telescope. The light collected from TRAPPIST-1, an ultra-cool dwarf star approximately 40 light-years ...

The impossible triple star KIC 2856960

September 9, 2014

There's news this week of an "impossible" triple star system recently discovered by astronomers. One that "defies known physics." Needless to say, there's no need to abandon physics quite yet.

Kepler watched a Cepheid star boil

September 28, 2016

After four years of continuous monitoring, astronomers detected clear signs of convective cells in a giant pulsating star for the first time using the Kepler space telescope.

Recommended for you

Jupiter's moon count reaches 79, including tiny 'oddball'

July 17, 2018

Twelve new moons orbiting Jupiter have been found—11 "normal" outer moons, and one that they're calling an "oddball." This brings Jupiter's total number of known moons to a whopping 79—the most of any planet in our Solar ...

Astronomers find a famous exoplanet's doppelgänger

July 17, 2018

When it comes to extrasolar planets, appearances can be deceiving. Astronomers have imaged a new planet, and it appears nearly identical to one of the best studied gas-giant planets. But this doppelgänger differs in one ...

Dawn mission to gather more data in home stretch

July 17, 2018

As NASA's Dawn spacecraft prepares to wrap up its groundbreaking 11-year mission, which has included two successful extended missions at Ceres, it will continue to explore—collecting images and other data.

Brown dwarf detected in the CoRoT-20 system

July 16, 2018

An international group of astronomers has discovered a new substellar object in the planetary system CoRoT-20. The newly identified object was classified as a brown dwarf due to its mass, which is greater than that of the ...

3 comments

Adjust slider to filter visible comments by rank

Display comments: newest first

cantdrive85
1.5 / 5 (8) Aug 22, 2017
So close, yet so far... Electric circuits inherently oscillate, which explains;
the Sun's variable magnetic fields

and
fluctuations in brightness

Only by considering circuit theory will these "mysteries" be solved.
cantdrive85
1 / 5 (4) Aug 22, 2017
The topic is about electric circuitry in plasmas, being the post is in an article about solar physics I thought this would be obvious. Inane indeed...
RealityCheck
1.6 / 5 (7) Aug 22, 2017
@FineStructureConstant, cantdrive85.

What's with you guys?

You perpetuate old personal/philosophical 'feuds', insults laden exchanges harking back to OLD obsolete narratives/views which I've been pointing out are NOW proven NOT correct either way!

So both 'sides' are arguing from incorrect basis which new discovery/review indicates were both INCOMPLETE if not totally wrong.

Seriousy, guys, can yu cool it long enough to get up to date? It's all HYBRID phenomena over LONG times/phases which limited/short-term views do NOT cover fully, hence mislead BOTH your 'sides' limited views

STOP your feuding, insulting; get real as to what is NOW being BETTER understood; bit-by-bit; using newer telescopes/reviews reflecting ALL the NEW found material and processes NOW being acknowledged to occupy/occur in all space which dwarfs/corrects OLD naive/underestimated assumptions/claims.

Stop talking over/across each other; both 'sides' are ONLY PARTIALLY correct/incorrect!

OK? :)

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.