Smart label could one day let you know when to toss food and cosmetics

August 21, 2017
Smart labels for cosmetics and food could one day tell consumers when to throw a product out. Credit: Silvana Andreescu

Detecting food and cosmetic spoilage and contamination. Identifying new medicinal plants in a remote jungle. Authenticating tea and wine. Scientists have developed a low-cost, portable, paper-based sensor that can potentially carry out all of these functions with easy-to-read results.

The researchers are presenting their results today at the 254th National Meeting & Exposition of the American Chemical Society (ACS). ACS, the world's largest scientific society, is holding the meeting here through Thursday. It features nearly 9,400 presentations on a wide range of science topics.

"I've always been interested in developing technologies that are accessible to both industry and the general population," Silvana Andreescu, Ph.D., says. "My lab has built a versatile sensing platform that incorporates all the needed reagents for detection in a piece of paper. At the same time, it is adaptable to different targets, including food contaminants, antioxidants and free radicals that indicate spoilage."

What sets Andreescu's apart from others, she says, are the nanostructures they use to catch and bind to compounds they're looking for.

"Most people working on similar sensors use solutions that migrate on channels," Andreescu says. "We use stable, inorganic particles that are redox active. When they interact with the substances we want to detect, they change color, and the intensity of the change tells us how concentrated the analyte is."

Additionally, because all of the reagents needed to operate the device are incorporated in the paper, users don't need to add anything other than the sample being tested.

The potential applications are wide-ranging. For example, much of her sensor work thus far has focused on detecting antioxidants in tea and wine. Andreescu, who's at Clarkson University, and her colleagues have found that these products have unique antioxidant "fingerprints" that could be used for authentication purposes. The portable sensor could also be used by researchers exploring remote locations, such as the Amazon rainforest, in search of natural sources of antioxidants, she notes.

More recently, Andreescu extended her work to root out food contamination and environmental pollutants. One sensor prototype can spot ochratoxin A, a fungal toxin commonly found in a range of products, including cereals and coffee. She says this direction could be expanded further to look for salmonella and E. coli.

Now, her team is taking the work in yet another direction, developing paper-based devices that change color as cosmetics and food go bad. These sensors bind to the that products accumulate as they age and eventually spoil. Although testing for this application is still ongoing, Andreescu says this technology could one day be incorporated into smart labels that would tell consumers when to throw a product out.

Explore further: Silk could improve sensitivity, flexibility of wearable body sensors

Related Stories

From battery waste to electrochemical sensor

July 20, 2017

Multiplex detection of antioxidants / food additives / preservatives in food samples is possible using our newly developed graphite-based nanocomposite electrochemical sensor from used alkaline battery. The chemical sensor ...

Sensor detects spoilage of food

May 6, 2015

VTT has developed a sensor that detects ethanol in the headspace of a food package. Ethanol is formed as a result of food spoilage. The sensor signal is wirelessly readable, for instance, by a mobile phone. VTT Technical ...

Monitoring sun exposure with a portable paper sensor

May 25, 2016

Summer is around the corner—time for cookouts and sunbathing. But too much sun can result in sunburn, which is the main cause of skin cancer. Because the time it takes to get burned depends on many factors, it is not easy ...

Recommended for you

Molecular beacon signals low oxygen with ultrasound

December 8, 2017

Areas of hypoxia, or low oxygen in tissue, are hallmarks of fast-growing cancers and of blockages or narrowing in blood vessels, such as stroke or peripheral artery disease. University of Illinois researchers have developed ...

Targeting cancer cells by measuring electric currents

December 8, 2017

EPFL researchers have used electrochemical imaging to take a step forward in mapping the distribution of biomolecules in tissue. This technology, which uses only endogenous markers – rather than contrast agents – could ...

Studying gas mask filters so people can breathe easier

December 8, 2017

In research that could lead to better gas mask filters, scientists at the Department of Energy's Lawrence Berkeley National Laboratory (Berkeley Lab) have been putting the X-ray spotlight on composite materials in respirators ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.