Protein transport channel offers new target for thwarting pathogen

August 31, 2017, Oregon State University

A bacterium that attacks people suffering from chronic lung disease and compromised immune systems could be halted by disrupting the distribution channels the organism uses to access the nutrient-rich cytoplasm of its host cell.

The findings by researchers in Oregon State University's colleges of science and are important because they suggest a new therapeutic target for one of the leading causes of bacterial infection in patients with HIV/AIDS.

The bacterium is Mycobacterium avium, the most common pathogen among non-tuberculosis mycobacteria. Highly opportunistic, M. avium invades and proliferates within a variety of human cells; it resides in a cytoplasmic vacuole and survives by remodeling its vacuolar compartment and resisting its host's antimicrobial mechanisms.

"Most bacteria that grow in phagocytic cells export their effector proteins that impair or redirect macrophage function by using a needle-like apparatus that perforates the vacuole membrane and delivers virulence-associated molecules to the cytoplasm," said co-corresponding author Luiz Bermudez of OSU's College of Veterinary Medicine. "But mycobacteria don't have that, so the question has always been, how do all these proteins get exported, how do they cross the vacuole membrane?"

They likely do so because proteins of the pathogen dock to transport proteins of the phagosome in the in a way that allows for the efficient secretion of effector proteins. Co-corresponding author Lia Danelishvili, also of the College of Veterinary Medicine, identified voltage-dependent anion channels as a possible means of exporting those proteins.

"A VDAC is very small, but it can become larger if several VDAC proteins get together through polymerization," Bermudez said. "We found that yes, mycobacteria use to bind to the VDAC. But although we tried to see if the proteins of the mycobacterium were exported by the VDAC, we couldn't show that. However, we did show that another component of the cell wall of the mycobacterium, lipids, are exported by that mechanism."

Next up is determining what specific physical and chemical interactions occur to make effector transport possible.

"The idea is to find out the mechanism bacteria use to secrete proteins produced in the that have important functions in controlling the phagocytic activity that's supposed to kill them," Bermudez said.

Findings were recently published in Scientific Reports

Explore further: Parasite protein could help inform new anti-tuberculosis strategies

More information: Lia Danelishvili et al, The Voltage-Dependent Anion Channels (VDAC) of Mycobacterium avium phagosome are associated with bacterial survival and lipid export in macrophages, Scientific Reports (2017). DOI: 10.1038/s41598-017-06700-3

Related Stories

Cellular transport routes

August 10, 2017

Unlike many other organisms, plants can't simply run away from environmental conditions that change for the worse. Nonetheless, plants have the ability to react to environmental effects. These reactions are initially subtle, ...

Bacteria free themselves with molecular 'speargun'

June 16, 2017

Many bacteria are armed with nano-spearguns, which they use to combat unwelcome competitors or knockout host cells. The pathogen responsible for tularemia, a highly virulent infectious disease, uses this weapon to escape ...

Recommended for you

Fish's use of electricity might shed light on human illnesses

June 21, 2018

Deep in the night in muddy African rivers, a fish uses electrical charges to sense the world around it and communicate with other members of its species. Signaling in electrical spurts that last only a few tenths of a thousandth ...

Not junk: 'Jumping gene' is critical for early embryo

June 21, 2018

A so-called "jumping gene" that researchers long considered either genetic junk or a pernicious parasite is actually a critical regulator of the first stages of embryonic development, according to a new study in mice led ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.