Research identifies new microbe with potential to help rebalance Earth's nitrogen cycle

August 23, 2017 by Katie Willis, University of Alberta
This microbe, nitrospira inopinata, could hold the answers for rectifying Earth’s nitrogen problem. Credit: Dimitri Kits

New research from University of Alberta and University of Vienna microbiologists provides unparalleled insight into the Earth's nitrogen cycle, identifying and characterizing the ammonia-oxidizing microbe, Nitrospira inopinata. The findings, explained Lisa Stein, co-author and professor of biology, have significant implications for climate change research.

"I consider the camouflaged beast in our midst," said Stein.

"Humans are now responsible for adding more fixed nitrogen, in the form of , to the environment than all natural sources combined. Because of that, the has been identified as the most unbalanced biogeochemical cycle on the planet."

The camouflaged beast

Earth's nitrogen cycle has been thrown significantly off balance by the process we use to make fertilizer, known as the Haber-Bosch process, which adds massive quantities of fixed nitrogen, or ammonium, to the environment. Downstream effects of excess ammonium has huge environmental implications, from dead zones in our oceans to a greenhouse gas effect 300 times that of carbon dioxide on a molecule to molecule basis.

Isolation and characterization of the Nitrospira inopinata microbe, Stein said, could hold the answers for Earth's nitrogen problem.

Practical applications

"The Nitrospira inopinata microbe is an ammonium sponge, outcompeting nearly all other bacteria and archaea in its oxidation of ammonium in the environment," explained Stein. "Now that we know how efficient this microbe is, we can explore many practical applications to reduce the amount of ammonium that contributes to environmental problems in our atmosphere, water, and soil."

The applications range from wastewater treatment, with the development of more efficient biofilms, to drinking water and soil purification to climate change research.

"An efficient complete ammonia oxidizer, such as Nitrospira inopinata, may produce less nitrous oxide," explained Kits. "By encouraging our microbe to outgrow other, incomplete oxidizers, we may, in turn, reduce their contribution to the greenhouse gas effect. Further investigation is required."

The research, "Kinetic analysis of a complete nitrifier reveals competitiveness in oligotrophic habitats," is published in Nature.

Explore further: Microbiologists discover enigmatic comammox microbes

More information: K. Dimitri Kits et al, Kinetic analysis of a complete nitrifier reveals an oligotrophic lifestyle, Nature (2017). DOI: 10.1038/nature23679

Related Stories

Microbiologists discover enigmatic comammox microbes

November 30, 2015

Nitrification plays a key role in Earth's natural nitrogen cycle and in agriculture. Now an international team of scientists led by Holger Daims and Michael Wagner, microbiologists at the University of Vienna, has discovered ...

Recommended for you

NASA study untangles smoke, pollution effects on clouds

September 26, 2018

A new NASA-led study helps answer decades-old questions about the role of smoke and human-caused air pollution on clouds and rainfall. Looking specifically at deep convective clouds—tall clouds like thunderclouds, formed ...

Researchers map susceptibility to man-made earthquakes

September 26, 2018

Earthquakes in Oklahoma and Kansas had been on the rise due to injection of wastewater—a byproduct of oil and gas operations—before regulations started limiting injections. Now a new model developed by Stanford University ...

Impact of WWII bombing raids felt at edge of space

September 25, 2018

Bombing raids by Allied forces during the Second World War not only caused devastation on the ground but also sent shockwaves through Earth's atmosphere which were detected at the edge of space, according to new research. ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.