Novel manufacturing method could lead to massive energy savings, new materials

August 10, 2017 by David Kubarek, Pennsylvania State University

Penn State researchers have developed a new method for sintering, a widely used manufacturing process for powdered materials. Using far less time and energy than the standard approach, the new method could have global implications on manufacturing and energy savings and pave the way for new discoveries.

Cold sintering, a devised by a team led by Clive Randall, professor of materials science and engineering and director of Penn State's Materials Research Institute, is a new take on sintering, a process through which powder-form materials are densified—compressed—using heat and pressure. Sintering is used to manufacture many materials including glass, metals, bricks and plastics.

Randall's approach uses liquid to complete the at times and temperatures that are a fraction of current methods. Because the process is completed in minutes instead of hours, time and could result in huge productivity and cost gains for the manufacturing sector and could lead to far fewer greenhouse gas emissions from manufacturing.

"What we're doing is using a liquid in a dissolution process. It then works by an evaporation process," he said. "That's been done before but usually with phases that aren't transient. What's really important about this process is that this liquid is there and then it's gone, and in the process of being there and gone it's capturing all the exchange and diffusional and growth processes that you need to drive the sintering."

Penn State researchers have developed a widespread manufacturing process that uses far less time and energy, a discovery that could have global implications on manufacturing and energy savings and pave the way for new discoveries. Credit: Pennsylvania State University

Because traditional sintering occurs over many hours at temperatures around 1,000 degrees Celsius, and cold sintering takes place at temperatures from room temperature to 200 degrees Celsius, the process has opened the door for novel manufacturing materials that can't sustain the higher temperatures of traditional .

"The ability to incorporate new materials into that whole process and make new types of functionality and then finally to have a system where it's basically densified in 20 minutes means that your through-put and your manufacturing yields could go up enormously," Randall said. "This is great for , it's great for energy savings, it's great for the environment and it's now permitting new intellectual endeavors in making ."

Explore further: Cold sintering of ceramics instead of high-temperature firing

Related Stories

Cold sintering of ceramics instead of high-temperature firing

August 16, 2016

Both hobbyists' pottery and engineered high-performance ceramics are only useable after they are fired for hours at high temperatures, usually above 1000 °C. The sintering process that takes place causes the individual particles ...

Sustainable ceramics without a kiln

February 28, 2017

The manufacture of cement, bricks, bathroom tiles and porcelain crockery normally requires a great deal of heat: a kiln is used to fire the ceramic materials at temperatures well in excess of 1,000°C. Now, material scientists ...

Recommended for you

Coffee-based colloids for direct solar absorption

March 22, 2019

Solar energy is one of the most promising resources to help reduce fossil fuel consumption and mitigate greenhouse gas emissions to power a sustainable future. Devices presently in use to convert solar energy into thermal ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.