From greenhouse gas to 3-D surface-microporous graphene

August 3, 2017 by Allison Mills, Michigan Technological University
The folds of 3-D graphene make mesopore channels that work with the surface's micropores to increase the material's supercapacitive properties. Credit: Michigan Technological University

Tiny dents in the surface of graphene greatly enhances its potential as a supercapacitor. Even better, it can be made from carbon dioxide.

A material scientist at Michigan Technological University invented a novel approach to take dioxide and turn it into 3-D graphene with micropores across its surface. The process is the focus of a new study published in the American Chemical Society's Applied Materials & Interfaces.

The conversion of carbon dioxide to useful materials usually requires high energy input due to its ultrahigh stability. However, science professor Yun Hang Hu and his research team created a heat-releasing reaction between carbon dioxide and sodium to synthesize 3-D surface-microporous graphene.

"3-D surface-microporous graphene is a brand-new material," Hu says, explaining the material's surface is pockmarked with micropores and folds into larger mesopores, which both increase the surface area available for adsorption of electrolyte ions. "It would be an excellent electrode material for energy storage devices."

Holey Supercapacitors

The supercapacitive properties of the unique structure of 3-D surface-microporous graphene make it suitable for elevators, buses, cranes and any application that requires a rapid charge/discharge cycle. Supercapacitors are an important type of energy storage device and have been widely used for regenerative braking systems in hybrid vehicles.

Basically, a material needs to store—and release—a charge. The limiting factor is how quickly ions can move through the material.

Current commercialized supercapacitors employ activated carbon using swaths of micropores to provide efficient charge accumulation. However, electrolyte ions have difficulty diffusing into or through its deep micropores, increasing the charging time.

"The new 3-D surface-microporous graphene solves this," Hu says. "The interconnected mesopores are channels that can act as an electrolyte reservoir and the surface-micropores adsorb electrolyte ions without needing to pull the ions deep inside the micropore."

The mesopore is like a harbor and the electrolyte ions are ships that can dock in the micropores. The ions don't have to travel a great distance between sailing and docking, which greatly improves charge/discharge cycles they can steer through. As a result, the material exhibited an ultrahigh areal capacitance of 1.28 F/cm2, which is considered an excellent rate capability as well as superb cycling stability for supercapacitors.

From Thin Air

To synthesize the material from carbon dioxide, Hu's team added carbon dioxide to sodium, followed by increasing temperature to 520 degrees Celsius. The reaction can release heat instead of require energy input.

During the process, not only forms 3-D graphene sheets, but also digs the micropores. The little dents are only 0.54 nanometers deep in the surface layers of .

Hu's work is funded by the National Science Foundation (NSF) and detailed in the ACS Applied Materials & Interfaces article "An Ideal Electrode Material, 3D Surface-Microporous Graphene for Supercapacitors with Ultrahigh Areal Capacitance."

Explore further: Scientists invented method to take material out of theory and make it into real electrode

More information: Liang Chang et al. An Ideal Electrode Material, 3D Surface-Microporous Graphene for Supercapacitors with Ultrahigh Areal Capacitance, ACS Applied Materials & Interfaces (2017). DOI: 10.1021/acsami.7b07381

Related Stories

Process turns wheat flour into CO2-capturing micropores

October 6, 2016

Researchers have shown how a process for the "carbonization" of wheat flour creates numerous tiny pores that capture carbon dioxide, representing a potential renewable technology to reduce the industrial emission of carbon ...

Used-cigarette butts offer energy storage solution

August 5, 2014

A group of scientists from South Korea have converted used-cigarette butts into a high-performing material that could be integrated into computers, handheld devices, electrical vehicles and wind turbines to store energy.

Recommended for you

Smart window controls light and heat, kills microorganisms

July 13, 2018

A new smart window offers more than just a nice view—it also controls the transmittance of sunlight, heats the interiors of buildings by converting solar radiation into heat, and virtually eliminates E. coli bacteria living ...

Quantum dot white LEDs achieve record efficiency

July 12, 2018

Researchers have demonstrated nanomaterial-based white-light-emitting diodes (LEDs) that exhibit a record luminous efficiency of 105 lumens per watt. Luminous efficiency is a measure of how well a light source uses power ...

How gold nanoparticles could improve solar energy storage

July 12, 2018

Star-shaped gold nanoparticles, coated with a semiconductor, can produce hydrogen from water over four times more efficiently than other methods—opening the door to improved storage of solar energy and other advances that ...

Graphene smart membranes can control water

July 12, 2018

Researchers at The University of Manchester's National Graphene Institute (NGI) have achieved a long-sought-after objective of electrically controlling water flow through membranes, as reported in Nature.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.