Graphene electronic tattoos can be applied to the skin with water

August 7, 2017 by Lisa Zyga feature
The graphene tattoos retain their full function for about two days, but can be peeled off by a piece of adhesive tape if desired. Credit: Shideh Kabiri Ameri et al. ©2017 American Chemical Society

Researchers have designed a graphene-based tattoo that can be directly laminated onto the skin with water, similar to a temporary tattoo. But instead of featuring artistic or colorful designs, the new tattoo is nearly transparent. Its main attraction is that graphene's unique electronic properties enable the tattoo to function as a wearable electronic device, with potential applications including biometric uses (such as measuring the electrical activity of the heart, brain, and muscles), as well as human-machine interactions.

The researchers, led by Deji Akinwande and Nanshu Lu at the University of Texas at Austin, have published a paper on the new graphene electronic in a recent issue of ACS Nano.

In some ways, the graphene electronic tattoo is similar to commercially available electronic devices for health and fitness tracking: both kinds of devices are capable of heart rate monitoring and bioimpedence (a measure of the body's response to an electric current). But because the ultrathin graphene tattoos can fully conform to the , they offer medical-grade data quality, in contrast with the lower performance of the rigid electrode sensors mounted on bands and strapped to the wrist or chest. Due to the high-quality sensing, the researchers expect that the graphene tattoos may offer promising replacements for existing medical sensors, which are typically taped to the skin and require gel or paste to enable the electrodes to function.

"The graphene tattoo is a dry physiological sensor which, because of its thinness, forms an ultra-conformal contact to skin, resulting in increased signal fidelity," coauthor Shideh Kabiri Ameri at the University of Texas at Austin told Phys.org. "Conformability results in less susceptibility to motion artifacts, which is one the biggest drawbacks of conventional dry sensors and electrodes for physiological measurements."

The new tattoos are made of graphene that is coated with an ultrathin backing layer of transparent polymer poly(methyl methacrylate) (PMMA). During fabrication, the graphene/PMMA bilayer is transferred to a piece of ordinary tattoo paper, and the bilayer is then carved into different patterns of serpentine ribbons to make different types of sensors. The finished tattoo is then transferred to any part of the body by bringing the graphene side in contact with the skin and applying water to the back of the tattoo paper to release the tattoo. The tattoos retain their full function for around two days or more, but can be peeled off by a piece of adhesive tape if desired.

Since the researchers previously showed that, theoretically, a graphene tattoo must be less than 510 nm thick to fully conform to human skin and exhibit optimal performance, the tattoo they fabricated here is just 460 nm thick. Combined with graphene/PMMA bilayer optical transparency of approximately 85%, and the fact that the tattoos are more stretchable than human skin, the resulting graphene tattoos are barely perceptible, both mechanically and optically.

Tests showed that the graphene electronic tattoos can be successfully used to measure a variety of electrophysiological signals, including skin temperature and skin hydration, and can function as an electrocardiogram (ECG), electromyogram (EMG), and electroencephalogram (EEG) for measuring the electrical activity of the heart, muscles, and brain, respectively.

"Graphene electronic tattoos are most promising for potential applications in mobile health care, assisted technologies, and ," Kabiri Ameri said. "In the area of human machine interfaces, electrophysiological signals recorded from the brain and muscles can be classified and assigned for specific action in a machine. This area of research can have applications for the internet of things, smart houses and cities, human computer interaction, smart wheelchairs, speech assistance technology, monitoring of distracted driving, and human-robot control. Recently we have demonstrated the application of tattoos for sensing human signals to wirelessly control flying objects. That demonstration will be reported in the near future."

Explore further: Color-shifting electronic skin could have wearable tech and prosthetic uses

More information: Shideh Kabiri Ameri et al. "Graphene Electronic Tattoo Sensors." ACS Nano. DOI: 10.1021/acsnano.7b02182

Related Stories

Video: Chemistry of tattoos

July 28, 2015

If you don't have a tattoo, you probably at least know someone who does—but what's the chemistry behind tattoos?

AAD: Complications of tattoos and tattoo ink discussed

March 1, 2013

(HealthDay)—Complications linked to tattoos and tattoo inks include allergic reactions, serious infections, and reactions that can be mistaken for skin cancer, according to information presented at the annual meeting of ...

Recommended for you

Art advancing science at the nanoscale

October 18, 2017

Like many other scientists, Don Ingber, M.D., Ph.D., the Founding Director of the Wyss Institute, is concerned that non-scientists have become skeptical and even fearful of his field at a time when technology can offer solutions ...

Chemical treatment improves quantum dot lasers

October 16, 2017

One of the secrets to making tiny laser devices such as opthalmic surgery scalpels work even more efficiently is the use of tiny semiconductor particles, called quantum dots. In new research at Los Alamos National Laboratory's ...

2 comments

Adjust slider to filter visible comments by rank

Display comments: newest first

TheGhostofOtto1923
Aug 07, 2017
This comment has been removed by a moderator.
EnricM
not rated yet Aug 08, 2017
Nice!
If it could measure lactate in blood I would be sold!

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.