How the genome sets its functional micro-architecture

August 17, 2017, Ecole Polytechnique Federale de Lausanne
The image represents a matrix of tripartite interactions spanning one megabase on chromosome 2 (black= no interactions to white= many tripartite interactions). It shows the contacts happening in digits cells between the Hoxd13 gene and at least two of its enhancer located in the same Topological Domain (TAD, thick green line). Credit: Pierre Fabre and Lucille Lopez-Delisle/EPFL

The genes that are involved in the development of the fetus are activated in different tissues and at different times. Their expression is carefully regulated by so-called "enhancer sequences", which are often located far from their target genes, and requires the DNA molecule to loop around and bring them in close proximity to their target genes. Such 3D changes of the DNA are in turn controlled by other sequences called topologically associating domains (TADs). EPFL scientists have now studied the TADs involved in digit development in the fetus and have gained insights in some of the big questions surrounding them. The work is published in Genome Biology.

Boundaries and tape

TADs are portion of the DNA molecule that divides the entire genome of an organism into manageable chunks, like districts in a city. Inside the cell, the vast amount of DNA is packaged into chromatin and chromatin is packaged into the familiar chromosomes. Inside every TAD there exist genes as well as the elements that regulate them, all packaged together and insulated from genes and regulators in neighboring TADs, like channels or walls that separate city districts. Breaking down the boundaries set by TADs leads to a number of disorders such as colon, esophagus, brain, and blood cancers.

But despite their importance, we know little about these boundaries, which confer to a TAD its structure. This raises the question: Is the information coming from the inner parts of a TAD or due to boundaries. The latter are DNA sequences that are often associated with the proteins cohesin and CTCF, which stick to the TAD extremities like tape, seemingly helping them divide and loop DNA around. CTCF, found at the boundaries of TAD domains, has been of special interest, recently, as it was shown to insulate TAD domains from each other rather than the genetic elements within a single TAD .

Digit insights

Now, a study by the lab of Denis Duboule at EPFL, with their colleagues at the University of Geneva, provides significant insights about TADs and how they organize DNA. "We were looking at DNA architecture and function," says researcher Pierre Fabre, who led the project.

Specifically, the scientists looked at a set of genes that Duboule's lab has longstanding expertise, the HoxD gene cluster, which controls digit development in mammalian embryos. The researchers used it as a model to learn about the interplay between multiple enhancer sequences within TADs, as well as "constitutive contacts", which refer to constant interactions between TADs and proteins that organize the packaging of HoxD genes into DNA chromatin, even without gene transcription going on.

The researchers combined chromosome conformation capture (4C-seq) and DNA fluorescent in situ hybridization (FISH) to measure compaction levels and TAD discreteness. They also made serial genomic deletions and inversions that impact the integrity of the HoxD chromatin domain and also cause remodeling of long-range regulatory elements. This allowed them to assess the robustness of the TAD architecture in this domain.

The data indicates that these TADs can host multiple associations between Hoxd and up to three of their enhancers, and that disrupting the 3D structure of chromatin leads to the remodeling of TAD structure. Additionally, CTCF seems to mediate the gating of long-range DNA contacts in a boundary-selection mechanism. "The building of the recomposed TAD depends on both distinct functional and intrinsic parameters such as the genomic distance," says Fabre.

Explore further: New study helps solve a great mystery in the organization of our DNA

More information: Pierre J. Fabre et al, Large scale genomic reorganization of topological domains at the HoxD locus, Genome Biology (2017). DOI: 10.1186/s13059-017-1278-z

Related Stories

Breaking boundaries in our DNA

July 25, 2017

Our bodies are composed of trillions of cells, each with its own job. Cells in our stomach help digest our food, while cells in our eyes detect light, and our immune cells kill off bugs. To be able to perform these specific ...

New mechanisms of self-organization in living cells

November 24, 2015

Chromosomes are structures inside cell nuclei that carry a large part of the genetic information and are responsible for its storage, transfer and implementation. Chromosomes are formed from a very long DNA molecule—a double ...

Nuclear architecture emerges at the awakening of the genome

April 6, 2017

The DNA molecules in each one of the cells in a person's body, if laid end to end, would measure approximately two metres in length. Remarkably, however, cells are able to fold and compact their genetic material in the confined ...

Recommended for you

In colliding galaxies, a pipsqueak shines bright

February 20, 2019

In the nearby Whirlpool galaxy and its companion galaxy, M51b, two supermassive black holes heat up and devour surrounding material. These two monsters should be the most luminous X-ray sources in sight, but a new study using ...

When does one of the central ideas in economics work?

February 20, 2019

The concept of equilibrium is one of the most central ideas in economics. It is one of the core assumptions in the vast majority of economic models, including models used by policymakers on issues ranging from monetary policy ...

Research reveals why the zebra got its stripes

February 20, 2019

Why do zebras have stripes? A study published in PLOS ONE today takes us another step closer to answering this puzzling question and to understanding how stripes actually work.

Correlated nucleons may solve 35-year-old mystery

February 20, 2019

A careful re-analysis of data taken at the Department of Energy's Thomas Jefferson National Accelerator Facility has revealed a possible link between correlated protons and neutrons in the nucleus and a 35-year-old mystery. ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.